People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Van Blitterswijk, Clemens A.
Maastricht University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2023Direct deep UV lithography to micropattern PMMA for stem cell culturecitations
- 2023Polymer film-based microwell array platform for long-term culture and research of human bronchial organoidscitations
- 2023Complementary Supramolecular Functionalization Enhances Antifouling Surfacescitations
- 2022Assessment of Cell-Material Interactions in Three Dimensions through Dispersed Coaggregation of Microsized Biomaterials into Tissue Spheroidscitations
- 2021Bioprinting Via a Dual-Gel Bioink Based on Poly(Vinyl Alcohol) and Solubilized Extracellular Matrix towards Cartilage Engineeringcitations
- 2021Thin fluorinated polymer film microcavity arrays for 3D cell culture and label-free automated feature extractioncitations
- 2017Development of a microfluidic platform integrating high-resolution microstructured biomaterials to study cell-material interactionscitations
- 2016Mimicking natural cell environments: design, fabrication and application of bio-chemical gradients on polymeric biomaterial substratescitations
- 2016Surface energy and stiffness discrete gradients in additive manufactured scaffolds for osteochondral regenerationcitations
- 2016The Effects of Crystal Phase and Particle Morphology of Calcium Phosphates on Proliferation and Differentiation of Human Mesenchymal Stromal Cellscitations
- 20163D high throughput screening and profiling of embryoid bodies in thermoformed microwell platescitations
- 2016Flexible Yttrium-Stabilized Zirconia Nanofibers Offer Bioactive Cues for Osteogenic Differentiation of Human Mesenchymal Stromal Cellscitations
- 2015Distribution and Viability of Fetal and Adult Human Bone Marrow Stromal Cells in a Biaxial Rotating Vessel Bioreactor after Seeding on Polymeric 3D Additive Manufactured Scaffoldscitations
- 2014A biocomposite of collagen nanofibers and nanohydroxyapatite for bone regenerationcitations
- 2010Biomimetic calcium phosphate coatings on recombinant spider silk fibrescitations
- 2008Comparative in vivo study of six hydroxyapatite-based bone graft substitutescitations
- 2007Biological performance in goats of a porous titanium alloy-biphasic calcium phosphate compositecitations
- 2006Influence of physico-chemical properties, macro- and microstructure on osteoinductive potential of calcium-phosphate ceramicscitations
- 2006Relevance of osteoinductive biomaterials in critical-sized orthotopic defectcitations
- 20053D microenvironment as essential element for osteoinduction by biomaterialscitations
- 2004Influence of octacalcium phosphate coating on osteoinductive properties of biomaterialscitations
Places of action
Organizations | Location | People |
---|
article
Comparative in vivo study of six hydroxyapatite-based bone graft substitutes
Abstract
<p>Improvement of synthetic bone graft substitutes as suitable alternatives to a patient's own bone graft remains a challenge in biomaterials research. Our goal was to answer the question of whether improved osteoinductivity of a material would also translate to better bone-healing orthotopically. Three porous biphasic calcium phosphate (BCP) ceramics (BCPA, BCPB, and BCPC), consisting of hydroxyapatite and P-tricalcium phosphate, a porous biphasic calcium phosphate ceramic reinforced with a bioresorbable polylactic acid to improve its mechanical properties (BCPC+), a pure hydroxyapatite ceramic (HA), and a carbonated apatite ceramic (CA) were implanted intramuscularly and orthotopically by using a transverse process model in 11 goats for 12 weeks. BCPA and BCPB had similar chemical composition but differed in their microstructure. BCPB was not osteoinductive at all, but BCPA induced ectopic bone formation in 9 of 11 animals. Orthotopically, BCPA performed better than BCPB in both the amount and rate of bone formation. BCPC, similar to BCPA structurally and physicochemically, showed comparable results ectopically and orthotopically. Addition of resorbable polymer to BCPC made the material less osteoinductive (4 of 11 animals) and delayed bone formation orthotopically. Neither HA nor CA were osteoinductive, and their orthotopic performance was inferior to the osteoinductive ceramics. The results of the present study showed that material-derived osteoinduction significantly enhanced bone healing orthotopically, and that this material property appeared more sensitive for predicting orthotopic performance than physicochemical and structural characteristics. (C) 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.</p>