Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Vilgrain, Valérie

  • Google
  • 2
  • 42
  • 25

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Biomechanical Assessment of Liver Integrity: Prospective Evaluation of Mechanical Versus Acoustic <scp>MR</scp> Elastography5citations
  • 2014Viscoelastic parameters for quantifying liver fibrosis20citations

Places of action

Chart of shared publication
Sinkus, Ralph
2 / 15 shared
Albuquerque, Miguel
1 / 1 shared
Doblas, Sabrina
1 / 1 shared
Wagner, Mathilde
1 / 1 shared
Beers, Bernard E. Van
1 / 1 shared
Paradis, Valérie
1 / 1 shared
Lambert, Simon A.
1 / 3 shared
Garteiser, Philippe
1 / 2 shared
Ronot, Maxime
1 / 1 shared
Chart of publication period
2024
2014

Co-Authors (by relevance)

  • Sinkus, Ralph
  • Albuquerque, Miguel
  • Doblas, Sabrina
  • Wagner, Mathilde
  • Beers, Bernard E. Van
  • Paradis, Valérie
  • Lambert, Simon A.
  • Garteiser, Philippe
  • Ronot, Maxime
OrganizationsLocationPeople

article

Biomechanical Assessment of Liver Integrity: Prospective Evaluation of Mechanical Versus Acoustic <scp>MR</scp> Elastography

  • Taylor, Stuart A.
  • Thalhammer, Axel
  • Vilgrain, Valérie
  • Konrad, Paul
  • Eichler, Katrin
  • Cengiz, Duygu
  • Wild, Peter
  • Gruberrouh, Tatjana
  • Martin, Simon S.
  • Vogl, Thomas J.
  • Pathilwarth, Anita
  • Sinkus, Ralph
  • Booz, Christian
  • Herrmann, Eva
  • Zeuzem, Stefan
  • Alizadeh, Leona S.
  • Gotta, Jennifer
  • Dangelo, Tommaso
  • Scholtz, Janerik
  • Kinzler, Maximilian N.
  • Solim, Levent A.
  • Torgashov, Katerina
  • Dahmer, Iulia
  • Koch, Vitali
  • Ziegengeist, Nicole S.
  • Finkelmeier, Fabian
  • Gruenewald, Leon D.
  • Mahmoudi, Scherwin
  • Hammerstingl, Renate M.
  • Almansour, Haidara
  • Yel, Ibrahim
  • Darwish, Omar
  • Cimprich, Marina
  • Onay, Melis
  • Bernatz, Simon
Abstract

<jats:sec><jats:title>Background</jats:title><jats:p>Magnetic resonance elastography (MRE) can quantify tissue biomechanics noninvasively, including pathological hepatic states like metabolic dysfunction‐associated steatohepatitis.</jats:p></jats:sec><jats:sec><jats:title>Purpose</jats:title><jats:p>To compare the performance of 2D/3D‐MRE using the gravitational (GT) transducer concept with the current commercial acoustic (AC) solution utilizing a 2D‐MRE approach. Additionally, quality index markers (QIs) were proposed to identify image pixels with sufficient quality for reliably estimating tissue biomechanics.</jats:p></jats:sec><jats:sec><jats:title>Study Type</jats:title><jats:p>Prospective.</jats:p></jats:sec><jats:sec><jats:title>Population</jats:title><jats:p>One hundred seventy participants with suspected or confirmed liver disease (median age, 57 years [interquartile range (IQR), 46–65]; 66 females), and 11 healthy volunteers (median age, 31 years [IQR, 27–34]; 5 females).</jats:p></jats:sec><jats:sec><jats:title>Field Strength/Sequence</jats:title><jats:p>Participants were scanned twice at 1.5 T and 60 Hz vibration frequency: first, using AC‐MRE (2D‐MRE, spin‐echo EPI sequence, 11 seconds breath‐hold), and second, using GT‐MRE (2D‐ and 3D‐MRE, gradient‐echo sequence, 14 seconds breath‐hold).</jats:p></jats:sec><jats:sec><jats:title>Assessment</jats:title><jats:p>Image analysis was performed by four independent radiologists and one biomedical engineer. Additionally, superimposed analytic plane shear waves of known wavelength and attenuation at fixed shear modulus were used to propose pertinent QIs.</jats:p></jats:sec><jats:sec><jats:title>Statistical Tests</jats:title><jats:p>Spearman's correlation coefficient (<jats:italic>r</jats:italic>) was applied to assess the correlation between modalities. Interreader reproducibility was evaluated using Bland–Altman bias and reproducibility coefficients. <jats:italic>P</jats:italic>‐values &lt;0.05 were considered statistically significant.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>Liver stiffness quantified via GT‐2D/3D correlated well with AC‐2D (<jats:italic>r</jats:italic> ≥ 0.89 [95% CI: 0.85–0.92]) and histopathological grading (<jats:italic>r</jats:italic> ≥ 0.84 [95% CI: 0.72–0.91]), demonstrating excellent agreement in Bland–Altman plots and between readers (<jats:italic>κ</jats:italic> ≥ 0.86 [95% CI: 0.81–0.91]). However, GT‐2D showed a bias in overestimating stiffness compared to GT‐3D. Proposed QIs enabled the identification of pixels deviating beyond 10% from true stiffness based on a combination of total wave amplitude, temporal sinusoidal nonlinearity, and wave signal‐to‐noise ratio for GT‐3D.</jats:p></jats:sec><jats:sec><jats:title>Conclusion</jats:title><jats:p>GT‐MRE represents an alternative to AC‐MRE for noninvasive liver tissue characterization. Both GT‐2D and 3D approaches correlated strongly with the established commercial approach, offering advanced capabilities in abdominal imaging compared to AC‐MRE.</jats:p></jats:sec><jats:sec><jats:title>Evidence Level</jats:title><jats:p>1</jats:p></jats:sec><jats:sec><jats:title>Technical Efficacy</jats:title><jats:p>Stage 2</jats:p></jats:sec>

Topics
  • strength
  • size-exclusion chromatography
  • chemical ionisation