Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ramaswamy, Addanki

  • Google
  • 1
  • 4
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Metallurgical characteristics of <scp>AA6061</scp> aluminium and <scp>AZ31B</scp> magnesium dissimilar joints by fusion welding technique2citations

Places of action

Chart of shared publication
Dwivedy, Maheshwar
1 / 1 shared
Malarvizhi, Sudersanan
1 / 1 shared
Bellamkonda, Prasanna Nagasai
1 / 1 shared
Balasubramanian, Visvalingam
1 / 3 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Dwivedy, Maheshwar
  • Malarvizhi, Sudersanan
  • Bellamkonda, Prasanna Nagasai
  • Balasubramanian, Visvalingam
OrganizationsLocationPeople

article

Metallurgical characteristics of <scp>AA6061</scp> aluminium and <scp>AZ31B</scp> magnesium dissimilar joints by fusion welding technique

  • Ramaswamy, Addanki
  • Dwivedy, Maheshwar
  • Malarvizhi, Sudersanan
  • Bellamkonda, Prasanna Nagasai
  • Balasubramanian, Visvalingam
Abstract

<jats:title>Abstract</jats:title><jats:sec><jats:label /><jats:p>Aluminium (Al) and magnesium (Mg) alloys are extensively used in the automobile sector because of their high strength‐to‐weight ratio, excellent castability low density and simplicity of recycling. Al‐Mg structures used in the automotive sector can potentially reduce their weight. Although there is a significant opportunity for substantial cost reduction, the use of magnesium in aluminium structures remains restricted. This study aims to weld 3 mm‐thick rolled sheets of AA6061 Al and AZ31B Mg alloy using the cold metal transfer (CMT) arc welding process. Three different filler wires (ER1100, ER4043, and ER5356) were used in the experiment. In this article, the mechanical and microstructure characteristics of Al/Mg dissimilar joints manufactured by CMT are evaluated and discussed in detail. Optical microscope (OM), scanning electron microscopy (SEM), energy dispersive x‐ray spectroscopy (EDX), and x‐ray diffraction (XRD) were used to analyze the CMT‐welded Al/Mg dissimilar joints. Of the three filler wires used, ER4043 (Al‐5%Si) filler wire yielded defect‐free sound joints due to the presence of Si, which improves the flow ability of molten filler during welding. The presence of Mg‐rich intermetallics‐Al<jats:sub>12</jats:sub>Mg<jats:sub>17)</jats:sub> and Al‐rich intermetallics‐Al<jats:sub>3</jats:sub>Mg<jats:sub>2</jats:sub> were observed. The fractured area of the CMT‐welded Al/Mg dissimilar joints revealed the presence of the Mg‐rich intermetallics (Al<jats:sub>12</jats:sub>Mg<jats:sub>17</jats:sub>), which is responsible for the decrease in tensile strength. The reduction of intermetallics, particularly of Mg‐rich intermetallics (Al<jats:sub>12</jats:sub>Mg<jats:sub>17</jats:sub>) is important for improving joint strength.</jats:p></jats:sec><jats:sec><jats:title>Research Highlights</jats:title><jats:p><jats:list list-type="bullet"> <jats:list-item><jats:p>Cold metal transfer (CMT) arc welding was used to control the Al‐Mg‐rich intermetallics in the Al/Mg dissimilar joints.</jats:p></jats:list-item> <jats:list-item><jats:p>The microstructure, morphology and phase composition of the welded joints were studied by OM, SEM, TEM, EDS and XRD.</jats:p></jats:list-item> <jats:list-item><jats:p>The weld metal and AL substrate bonded with a strong interface, while weld metal and Mg substrate were joined at the epitaxial solidification area where the intermetallic compounds of Mg<jats:sub>2</jats:sub>Al<jats:sub>3</jats:sub>, Mg<jats:sub>17</jats:sub>Al<jats:sub>12</jats:sub> and Mg<jats:sub>2</jats:sub>Si are generated.</jats:p></jats:list-item> <jats:list-item><jats:p>The weld metal on the Mg side experienced brittle fracture, with a continuous distribution of Mg<jats:sub>2</jats:sub>Al<jats:sub>3</jats:sub>, Mg<jats:sub>17</jats:sub>Al<jats:sub>12</jats:sub> and Mg<jats:sub>2</jats:sub>Si.</jats:p></jats:list-item> </jats:list></jats:p></jats:sec>

Topics
  • density
  • impedance spectroscopy
  • compound
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • experiment
  • Magnesium
  • Magnesium
  • aluminium
  • strength
  • transmission electron microscopy
  • defect
  • Energy-dispersive X-ray spectroscopy
  • tensile strength
  • intermetallic
  • size-exclusion chromatography
  • wire
  • solidification