Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Terzioglu, C.

  • Google
  • 2
  • 11
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Evolution of fundamental mechanical properties with aliovalent Co/Cu partial substitution and preparation method for Y-123 system2citations
  • 2024Support of polaronic states and charge carrier concentrations of <scp>YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7</sub></scp><sub>‐y</sub> ceramics by oxygen and <scp>Mn<sub>2</sub>O<sub>3</sub></scp> impurity6citations

Places of action

Chart of shared publication
Yildirim, G.
1 / 2 shared
Nefrow, A. R. A.
1 / 1 shared
Ozturk, O.
1 / 2 shared
Seydioglu, T.
1 / 1 shared
Bulut, F.
1 / 1 shared
Ada, H.
1 / 1 shared
Akkurt, Bahadir
1 / 1 shared
Safran, S.
1 / 1 shared
Kurtul, Gulnur
1 / 1 shared
Turgay, Tahsin
1 / 2 shared
Yildirim, Gurcan
1 / 4 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Yildirim, G.
  • Nefrow, A. R. A.
  • Ozturk, O.
  • Seydioglu, T.
  • Bulut, F.
  • Ada, H.
  • Akkurt, Bahadir
  • Safran, S.
  • Kurtul, Gulnur
  • Turgay, Tahsin
  • Yildirim, Gurcan
OrganizationsLocationPeople

article

Support of polaronic states and charge carrier concentrations of <scp>YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7</sub></scp><sub>‐y</sub> ceramics by oxygen and <scp>Mn<sub>2</sub>O<sub>3</sub></scp> impurity

  • Kurtul, Gulnur
  • Turgay, Tahsin
  • Terzioglu, C.
  • Yildirim, Gurcan
Abstract

<jats:title>Abstract</jats:title><jats:sec><jats:label /><jats:p>The influence of oxygen and Mn<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> impurity addition intervals 0.01 ≤ <jats:italic>x</jats:italic> ≤ 0.30 on the basic electrical conductivity, stabilization, crystallinity quality, grain boundary couplings, structural, orbital hybridization mechanisms, and superconducting properties of YBa<jats:sub>2</jats:sub>Cu<jats:sub>3</jats:sub>O<jats:sub>7‐y</jats:sub>Mn<jats:sub>x</jats:sub> ceramics has extensively been analyzed by electrical resistivity, X‐ray diffraction investigations, and related theoretical results. It has been found that there is a strong link between the production conditions and fundamental characteristic features. All the results deduced have enabled us to discuss the variation of electron–electron and electron–phonon interactions, order parameter for super‐electrons and cooper‐pairs, organization of Cu–O coordination, homogeneities of oxidation states, microscopic structural problems, electronic density states, and grain boundary couplings between the adjacent layers in the YBa<jats:sub>2</jats:sub>Cu<jats:sub>3</jats:sub>O<jats:sub>7‐y</jats:sub> ceramics. Similarly, we have discussed the change in the formation of pairing mechanisms and bipolarons in the polarizable lattices in the microdomain clusters. The results have shown that both the presence of oxygen and optimum manganese impurity of <jats:italic>x</jats:italic> = 0.07 led to the enhancement in the fundamental characteristic features related to the basic physical, quantum mechanical, and thermodynamics features. Thus, the material produced at the most ideal conditions has exhibited the best orthorhombic crystal structure with the distortion degree of 6.419 × 10<jats:sup>−3</jats:sup>, paring mechanism, and crystallinity quality due to the development of orthorhombicity and oxygen ordering degree. Namely, the addition of optimum manganese impurity has organized the Cu–O coordination and stabilized the crystal structure as much as possible. Numerically, the sample prepared with <jats:italic>x</jats:italic> = 0.07 Mn ions has displayed the largest crystallite size, c‐axis length, residual resistivity ratio, onset, and offset critical temperatures of 10.977, 11.723 Å, 73 nm, 98.320 K, and 100.504 K, respectively. Conversely, the same material has demonstrated the smallest oxygen ordering degree of 6.714, strain of 44.015 × 10<jats:sup>−3</jats:sup>, and <jats:italic>a</jats:italic>‐ and <jats:italic>b</jats:italic>‐axis lengths of 3.792 and 3.841 Å. On the other hand, the oxygen‐free annealing condition and excess manganese impurity have completely damaged the whole mechanism because of the phase transition from orthorhombic to tetragonal (structural O–T transition) crystal structure. To sum up, the oxygen and optimum manganese impurity have encouraged the YBa<jats:sub>2</jats:sub>Cu<jats:sub>3</jats:sub>O<jats:sub>7‐y</jats:sub> superconductors to use in much more application fields.</jats:p></jats:sec><jats:sec><jats:title>Research Highlights</jats:title><jats:p><jats:list list-type="bullet"> <jats:list-item><jats:p>The presence of oxygen and an optimal level of Mn<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> impurity in YBa2Cu3O7‐y superconductors improved superconducting properties.</jats:p></jats:list-item> <jats:list-item><jats:p>The optimal level of Mn<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> impurity promotes standard metallic characteristics.</jats:p></jats:list-item> <jats:list-item><jats:p>Ideal process conditions lead to the formation of super‐electrons and cooper‐pairs, expanding the superconducting energy gap.</jats:p></jats:list-item> <jats:list-item><jats:p>Optimal conditions lead to the expansion of orthorhombic distortion symmetry and average crystallite size.</jats:p></jats:list-item> <jats:list-item><jats:p>The excess manganese impurity results in a metal‐to‐insulator transition.</jats:p></jats:list-item> </jats:list></jats:p></jats:sec>

Topics
  • density
  • impedance spectroscopy
  • cluster
  • grain
  • resistivity
  • phase
  • grain boundary
  • Oxygen
  • phase transition
  • annealing
  • ceramic
  • size-exclusion chromatography
  • Manganese
  • electrical conductivity
  • crystallinity
  • critical temperature