People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rauf, Abdul
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Harnessing the power of multifunctional γ-Fe2O3@CuO nanocompositescitations
- 2024Zinc‐based metal–organic frameworks for encapsulation and sustained release of ciprofloxacin for excellent antibacterial activitiescitations
- 2024Highly synergistic antibacterial activity of copper (II)-based nano metal–organic frameworkcitations
- 2023Excellent antimicrobial performances of Cu(II) metal organic framework@Fe3O4 fused cubic particlescitations
- 2023Fabrication of novel oxochalcogens halides of manganese and tin nanocomposites as highly efficient photocatalysts for dye degradation and excellent antimicrobial activitycitations
- 2022Coupling of Se-ZnFe2O4 with rGO for spatially charged separated nanocomposites as an efficient photocatalyst for degradation of organic pollutants in natural sunlightcitations
- 2022Boosting photocatalytic interaction of sulphur doped reduced graphene oxide-based S@rGO/NiS2 nanocomposite for destruction of pathogens and organic pollutant degradation caused by visible lightcitations
- 2022Well-defined heterointerface over the doped sulfur atoms in NiS@S-rGO nanocomposite improving spatial charge separation with excellent visible-light photocatalytic performancecitations
Places of action
Organizations | Location | People |
---|
article
Zinc‐based metal–organic frameworks for encapsulation and sustained release of ciprofloxacin for excellent antibacterial activities
Abstract
<jats:title>Abstract</jats:title><jats:sec><jats:title>BACKGROUND</jats:title><jats:p>In terms of crystalline nanoporous materials, metal–organic frameworks (MOFs) are relatively new. They are self‐assembling structures made of organic ligands that serve as linkers between metal centers and metal ions that function as coordination centers. Due to MOFs' high porosity, absence of nonaccessible bulk volume, vast surface areas and variety of pore sizes and topologies, drug delivery via them is becoming more and more common.</jats:p></jats:sec><jats:sec><jats:title>RESULTS</jats:title><jats:p>Zn‐MOF and Zn‐MOF@drug were produced using a solvothermal approach in this study and characterized using a variety of methods, including Fourier transform infrared spectroscopy, powder X‐ray diffraction and scanning electron microscopy. Utilizing the zone of inhibition and minimum inhibitory concentration approaches, Zn‐MOF and Zn‐MOF@drug were evaluated for their antibacterial capability against <jats:italic>Escherichia coli</jats:italic> and <jats:italic>Bacillus subtilis</jats:italic>, two types of bacteria.</jats:p></jats:sec><jats:sec><jats:title>CONCLUSION</jats:title><jats:p>The antibacterial potential of Zn‐MOF@drug was greater than that of the metal salt, commercially available ZnO, Zn‐MOF and ligand alone. The mechanism of antibacterial activity of Zn‐MOF@drug was also discussed. © 2024 Society of Chemical Industry (SCI).</jats:p></jats:sec>