Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Reade, Gavin W.

  • Google
  • 1
  • 3
  • 16

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2004The application of reticulated vitreous carbon rotating cylinder electrodes to the removal of cadmium and copper ions from solution16citations

Places of action

Chart of shared publication
Ponce De León, C.
1 / 46 shared
Walsh, Frank C.
1 / 22 shared
Bond, Peter
1 / 2 shared
Chart of publication period
2004

Co-Authors (by relevance)

  • Ponce De León, C.
  • Walsh, Frank C.
  • Bond, Peter
OrganizationsLocationPeople

article

The application of reticulated vitreous carbon rotating cylinder electrodes to the removal of cadmium and copper ions from solution

  • Ponce De León, C.
  • Reade, Gavin W.
  • Walsh, Frank C.
  • Bond, Peter
Abstract

The removal of cadmium and cupric ions from 0.50 mol dm-3 Na2SO4 at pH 2 and 298 K was studied using a reticulated vitreous carbon (RVC) rotating cylinder electrode (RCE). The cathode was a 100 pores per linear inch porosity grade with a radius of 0.5 cm, a height of 1.2 cm and a volume of 0.94 cm[3]. The cathode was rotated a constant speed of 1500 rev min-1. A rate enhancement of approximately three times is reported for the removal of cupric ions from a chloride solution (0.05 mol dm-3 cupric ions in 0.1 mol dm-3 NaCl at pH 7) when compared with the analogous reaction in acid sulfate solutions (0.50 mol dm-3 Na2SO4 at pH 2). SEM images of the metal deposit morphology allow the morphology of the metal deposits to be characterised. The deposits showed incomplete coverage of the RVC surface and appreciable roughness developed with time due to dendritic growths.

Topics
  • impedance spectroscopy
  • pore
  • morphology
  • surface
  • Carbon
  • scanning electron microscopy
  • copper
  • porosity
  • Cadmium