Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sharifulden, Nik S. A. N.

  • Google
  • 1
  • 6
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024The biological and therapeutic assessment of a <scp>P(3HB‐co‐4HB)</scp>‐bioactive glass‐graphene composite biomaterial for tissue regeneration1citations

Places of action

Chart of shared publication
Silva, Lady V. Barrios
1 / 2 shared
Chau, David Ys
1 / 4 shared
Kim, Haewon
1 / 1 shared
Shin, Seongjin
1 / 1 shared
Mandakhbayar, Nandinerdene
1 / 1 shared
Nguyen, Linh T. B.
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Silva, Lady V. Barrios
  • Chau, David Ys
  • Kim, Haewon
  • Shin, Seongjin
  • Mandakhbayar, Nandinerdene
  • Nguyen, Linh T. B.
OrganizationsLocationPeople

article

The biological and therapeutic assessment of a <scp>P(3HB‐co‐4HB)</scp>‐bioactive glass‐graphene composite biomaterial for tissue regeneration

  • Silva, Lady V. Barrios
  • Sharifulden, Nik S. A. N.
  • Chau, David Ys
  • Kim, Haewon
  • Shin, Seongjin
  • Mandakhbayar, Nandinerdene
  • Nguyen, Linh T. B.
Abstract

<jats:title>Abstract</jats:title><jats:p>An ideal wound dressing should create a healing environment that relieves pain, protects against infections, maintains moisture, removes debris, and speeds up wound closure and repair. However, conventional options like gauze often fall short in fulfilling these requirements, especially for chronic or nonhealing wounds. Hence there is a critical need for inventive formulations that offer efficient, cost‐effective, and eco‐friendly alternatives. This study focuses on assessing the innovative formulation based on a microbial‐derived copolymer known as poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate), P(3HB‐co‐4HB) bioactive glass and graphene particles, and exploring their biological response in vitro and in vivo—to find the best combination that promotes cell adhesion and enhances wound healing. The formulation optimized at concentration of bioactive glass (1 w/w%) and graphene (0.01 w/w%) showed accelerated degradation and enhanced blood vessel formation. Meanwhile biocompatibility was evaluated using murine osteoblasts, human dermal fibroblasts, and standard cell culture assays, demonstrating no adverse effects after 7 days of culture and well‐regulated inflammatory kinetics. Whole thickness skin defect using mice indicated the feasibility of the biocomposites for a faster wound closure and reduced inflammation. Overall, this biocomposite appears promising as an ideal wound dressing material and positively influencing wound healing rates.</jats:p>

Topics
  • impedance spectroscopy
  • glass
  • glass
  • composite
  • defect
  • copolymer
  • biocompatibility