Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Grøndahl, Lisbeth

  • Google
  • 3
  • 4
  • 38

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2021Hydrolytic degradation of porous poly(hydroxybutyrate-co-hydroxyvalerate) scaffolds manufactured using selective laser sintering14citations
  • 2021Corrigendum to Hydrolytic degradation of porous poly(hydroxybutyrate-co-hydroxyvalerate) scaffolds manufactured using selective laser sintering Polymer Degradation and Stability 187 (2021) (Polymer Degradation and Stability (2021) 187, (S0141391021000653), (10.1016/j.polymdegradstab.2021.109545))1citations
  • 2019Akermanite reinforced PHBV scaffolds manufactured using selective laser sintering23citations

Places of action

Chart of shared publication
Lu, Mingyuan
3 / 8 shared
Patel, Rushabh
2 / 3 shared
Monticone, Davide
2 / 2 shared
Diermann, Sven Heinrich
1 / 1 shared
Chart of publication period
2021
2019

Co-Authors (by relevance)

  • Lu, Mingyuan
  • Patel, Rushabh
  • Monticone, Davide
  • Diermann, Sven Heinrich
OrganizationsLocationPeople

article

Akermanite reinforced PHBV scaffolds manufactured using selective laser sintering

  • Lu, Mingyuan
  • Grøndahl, Lisbeth
  • Diermann, Sven Heinrich
Abstract

Scaffold assisted tissue engineering presents a promising approach to repair diseased and fractured bone. For successful bone repair, scaffolds need to be made of biomaterials that degrade with time and promote osteogenesis. Compared to the commonly used ß-tricalcium phosphate scaffolds, Akermanite (AKM) scaffolds were found to degrade faster and promote more osteogenesis. The objective of this study is to synthesize AKM micro and nanoparticle reinforced poly(3-hydroxybutyrate-co-3-hydroxyvalerate; PHBV) composite scaffolds using selective laser sintering (SLS). The synthesized composite scaffolds had an interconnected porous microstructure (61–64% relative porosity), large specific surface areas (31.1–64.2 mm ) and pore sizes ranging from 303 to 366 and 279 to 357 μm in the normal and lateral direction, respectively, which are suitable for bone tissue repair. The observed hydrophilic nature of the scaffolds and the swift water uptake was due to the introduction of numerous carboxylic acid groups on the scaffold surface after SLS, circumventing the need for postprocessing. For the composite scaffolds, large amounts of AKM particles were exposed on the skeleton surface, which is a requirement for cell attachment. In addition, the particles embedded inside the skeleton helped to significantly reinforce the scaffold structure. The compressive strength and modulus of the composite scaffolds were up to 7.4 and 103 MPa, respectively, which are 149 and 197% of that of the pure PHBV scaffolds.

Topics
  • nanoparticle
  • porous
  • impedance spectroscopy
  • pore
  • surface
  • strength
  • composite
  • porosity
  • biomaterials
  • sintering
  • laser sintering
  • static light scattering
  • carboxylic acid