Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Martinez, Marcela A. García

  • Google
  • 1
  • 7
  • 21

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Sterilization effects on the handling and degradation properties of calcium phosphate cements containing poly (D,L -lactic-co-glycolic acid) porogens and carboxymethyl cellulose21citations

Places of action

Chart of shared publication
Rehman, Ihtesham Ur
1 / 71 shared
Kucko, Nathan W.
1 / 3 shared
Ulset, Ann-Sissel Teialeret
1 / 1 shared
Christensen, Bjørn E.
1 / 1 shared
Leeuwenburgh, Sander C. G.
1 / 9 shared
Herber, Ralf-Peter
1 / 3 shared
Li, Wenliang
1 / 1 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Rehman, Ihtesham Ur
  • Kucko, Nathan W.
  • Ulset, Ann-Sissel Teialeret
  • Christensen, Bjørn E.
  • Leeuwenburgh, Sander C. G.
  • Herber, Ralf-Peter
  • Li, Wenliang
OrganizationsLocationPeople

article

Sterilization effects on the handling and degradation properties of calcium phosphate cements containing poly (D,L -lactic-co-glycolic acid) porogens and carboxymethyl cellulose

  • Rehman, Ihtesham Ur
  • Kucko, Nathan W.
  • Ulset, Ann-Sissel Teialeret
  • Christensen, Bjørn E.
  • Martinez, Marcela A. García
  • Leeuwenburgh, Sander C. G.
  • Herber, Ralf-Peter
  • Li, Wenliang
Abstract

<p>Injectable, self-setting calcium phosphate cements (CPCs) are synthetic bone substitutes considered favorable for the repair and regeneration of bone due to their osteocompatibility and unique handling properties. However, their clinical applicability can be compromised due to insufficient cohesion upon injection into the body coupled with poor degradation rates that restricts new bone formation. Consequently, carboxymethyl cellulose (CMC) was incorporated into CPC formulations to improve their cohesion and injectability while poly (D,L -lactic-co-glycolic acid) (PLGA) porogens were added to introduce macroporosity and improve their biodegradation rate. Like most biomaterials, CPCs are gamma irradiated before clinical use to ensure sufficient sterilization. However, it is well known that gamma irradiation also reduces the molecular weight of CMC and PLGA via chain scission, which affects their material properties. Therefore, the aim of this study is to measure the effect that gamma irradiation has on the molecular weight of CMC at varying doses of 15, 40, or 80 kGy and investigate how this affects the handling (i.e., injectability, cohesion, washout, and setting times) and in vitro degradation behavior of CPC formulations. Results reveal that the molecular weight of CMC decreases with increasing gamma irradiation dose, thereby reducing the viscosifying capabilities of CMC, which causes CPCs to deteriorate more readily. Further, the addition of CMC seems to inhibit the degree of phase transformation during cement setting while the subsequent reduction in molecular weight of PLGA after gamma irradiation improves the in vitro degradation rate of CPCs due to the faster degradation rate of low molecular weight PLGA. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 2216-2228, 2019.</p>

Topics
  • impedance spectroscopy
  • phase
  • cement
  • Calcium
  • molecular weight
  • cellulose
  • biomaterials