People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tighe, Brian J.
Aston University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Low cytotoxicity, antibacterial property, and curcumin delivery performance of toughness-enhanced electrospun composite membranes based on poly(lactic acid) and MAX phase (Ti3AlC2)citations
- 2023In Situ Compatibilized Blends of PLA/PCL/CAB Melt-Blown Films with High Elongation: Investigation of Miscibility, Morphology, Crystallinity and Modellingcitations
- 2021The influence of structure and morphology on ion permeation in commercial silicone hydrogel contact lensescitations
- 2020Physical and thermal properties of l-lactide/ϵ-caprolactone copolymerscitations
- 2020Physical and thermal properties of l-lactide/ϵ-caprolactone copolymers:the role of microstructural design
- 2019Investigating the permeation properties of contact lenses and its influence on tear electrolyte compositioncitations
- 2018Biodegradable compatibilized poly(L-lactide)/thermoplastic polyurethane blends:design, preparation and property testing
- 2018Biodegradable compatibilized poly(L-lactide)/thermoplastic polyurethane blendscitations
- 2018Hydrophobic and Hydrophilic Effects on Water Structuring and Adhesion in Denture Adhesivescitations
- 2017Tuneable denture adhesives using biomimetic principles for enhanced tissue adhesion in moist environmentscitations
- 2016Bioplasticscitations
- 2016Structural design of contact lens-based drug delivery systems; in vitro and in vivo studies of ocular triggering mechanismscitations
- 2015Polymer-lipid interactionscitations
- 2014Controlled synthesis and processing of a poly(L-lactide-co-ε-caprolactone) copolymer for biomedical use as an absorbable monofilament surgical suturecitations
- 2014Identification of optically clear regions of ternary polymer blends using a novel rapid screening methodcitations
- 2012Charge-balanced copolymer hydrogels
- 2012Proteoglycan analogues for ophthalmic and orthopaedic applicationscitations
- 2011Adhesives and interfacial phenomena in wound healingcitations
- 2011Dehydration at the lens surface
- 2009Towards a synthetic osteo-odonto-keratoprosthesiscitations
- 2001Centrifugally-spun polyhydroxybutyrate fibres: Effect of process solvent on structure, morphology and cell responsecitations
Places of action
Organizations | Location | People |
---|
article
Investigating the permeation properties of contact lenses and its influence on tear electrolyte composition
Abstract
The health of the cornea is paramount; the aim of this study was to assess the permeation of essential tear electrolytes through a range of commercial contact lenses. Donor/receiver conductivity measurements were recorded using a dual‐chamber diffusion system which allowed material permeability profiles and coefficients to be calculated. Water structuring properties of the contact lenses were measured by differential scanning calorimetry. Freezing water was subdivided into “ice‐like” water (free, non‐bound and has a melting point close to that of pure water) and polymer‐associated water (free but loosely bound to the polymer matrix). Each material interacts differently with each of the three salts, for example; lotrafilcon B (34% equilibrium water content [EWC]) shows a higher and larger range of receiver concentrations post KCl, NaCl, CaCl2 permeation (76, 59 and 42 mM, respectively) compared with the lower and tighter range exhibited by lotrafilcon A (22% EWC) (36, 22, and 18 mM, respectively). Additionally, in terms of the relationship between permeation and water structure, balafilcon A (34% EWC) has a high KCl permeation (P60 258 × 10−8 cm2/s) and ice‐like water (14%), but narafilcon A (44% EWC) has a low ion permeation (P60 3.9 × 10−8 cm2/s) and significantly less ice‐like water (4%). The permeation trends for the silicone hydrogel materials could not be fully explained by water content and structuring. Composition and, in particular, the microstructure and morphology of these materials must impart a greater influence on permeation capability.