People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gengenbach, Thomas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Interpretation of Complex X-ray Photoelectron Peak Shapes Part II: Case Study of Fe 2p3/2 fitting applied to Austenitic Stainless Steels 316 and 304.citations
- 2020Covalent sizing surface modification as a route to improved interfacial adhesion in carbon fiber-epoxy compositescitations
- 2020Investigating the real-time dissolution of a compositionally complex alloy using inline ICP and correlation with XPScitations
- 2020Real-time dissolution of a compositionally complex alloy using inline ICP and correlation with XPScitations
- 2020Improving the Stability of Ambient-Processed SnO2-Based, Perovskite Solar Cells by UV-Treatment of the Sub-Cellscitations
- 2020Improving the Stability of Ambient processed, SnO2-Based, Perovskite Solar Cells by the UV-treatment of Sub-Cellscitations
- 2019Electrocatalytic CO2 reduction to formate on Cu based surface alloys with enhanced selectivitycitations
- 2019Fiber with Butterfly Wings: Creating Colored Carbon Fibers with Increased Strength, Adhesion, and Reversible Malleabilitycitations
- 2018Morphology and surface properties of high strength siloxane poly(urethane-urea)s developed for heart valve applicationcitations
- 2017Limitations with solvent exchange methods for synthesis of colloidalfullerenescitations
- 2017Reduction of surface fat formation on spray-dried milk powders through emulsion stabilization with λ-carrageenancitations
- 2016Effect of the deformability of guest particles on the tensile strength of tablets from interactive mixturescitations
- 2014Water-dispersible magnetic carbon nanotubes as T2-weighted MRI contrast agentscitations
- 2012One step multifunctional micropatterning of surfaces using asymmetric glow discharge plasma polymerisation
- 2011Characterization of the surface properties of a model pharmaceutical fine powder modified with a pharmaceutical lubricant to improve flow via a mechanical dry coating approachcitations
Places of action
Organizations | Location | People |
---|
article
Morphology and surface properties of high strength siloxane poly(urethane-urea)s developed for heart valve application
Abstract
A series of siloxane poly(urethane-urea) (SiPUU) was developed by incorporating a macrodiol linked with a diisocyanate to form part of the soft segment. The effect of this modification on morphology, surface properties, surface elemental composition and creep resistance was investigated. The linked macrodiol was prepared by reacting α,ω-bis(6-hydroxyethoxypropyl) poly(dimethylsiloxane)(PDMS) or poly(hexamethylene oxide) (PHMO) with either 4,4’-methylenediphenyl diisocyanate (MDI), hexamethylene diisocyanate (HDI) or isophorone diisocyanate (IPDI). SiPUU with PHMO-MDI-PHMO and PHMO-IPDI-PHMO linked macrodiols showed enhanced creep resistance and recovery when compared with Elast-EonTM 2A which is a commercial biostable polyurethane. Small and wide-angle X-ray scattering data were consistent with significant increase of hydrogen bonding between hard and soft segments with linked-macrodiols which improved SiPUU’s tensile stress and tear strength. These SiPUU were hydrophobic with contact angle higher than 101° and they had low water uptake (0.7%·w/w of dry mass). They also had much higher siloxane concentration on the surface compared to that in the bulk.