People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Barõ, M. D.
Universitat Autònoma de Barcelona
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2016Designing new biocompatible glass-forming Ti<inf>75-</inf><inf>x</inf>Zr<inf>10</inf>Nb<inf>x</inf>Si<inf>15</inf> (x = 0, 15) alloys: Corrosion, passivity, and apatite formationcitations
- 2016Effect of surface modifications of Ti40Zr10Cu38Pd12 bulk metallic glass and Ti-6Al-4V alloy on human osteoblasts in vitro biocompatibilitycitations
- 2015Nanostructured Ti-Zr-Pd-Si-(Nb) bulk metallic composites: Novel biocompatible materials with superior mechanical strength and elastic recoverycitations
- 2014In vitro biocompatibility assessment of Ti40Cu38Zr10Pd12 bulk metallic glasscitations
- 2013On the biodegradability, mechanical behavior, and cytocompatibility of amorphous Mg72Zn23Ca5 and crystalline Mg70Zn23Ca5Pd2 alloys as temporary implant materialscitations
- 2013Novel Ti-Zr-Hf-Fe nanostructured alloy for biomedical applicationscitations
- 2012Improved mechanical performance and delayed corrosion phenomena in biodegradable Mg-Zn-Ca alloys through Pd-alloyingcitations
- 2004Ultraporous Single Phase Iron Oxide-Silica Nanostructured Aerogels from Ferrous Precursorscitations
- 2003High-coercivity ultralight transparent magnetscitations
Places of action
Organizations | Location | People |
---|
article
Nanostructured Ti-Zr-Pd-Si-(Nb) bulk metallic composites: Novel biocompatible materials with superior mechanical strength and elastic recovery
Abstract
© 2014 Wiley Periodicals, Inc. The microstructure, mechanical behaviour, and biocompatibility (cell culture, morphology, and cell adhesion) of nanostructured Ti45Zr15Pd35-xSi5Nbx with x = 0, 5 (at. %) alloys, synthesized by arc melting and subsequent Cu mould suction casting, in the form of rods with 3 mm in diameter, are investigated. Both Ti-Zr-Pd-Si-(Nb) materials show a multi-phase (composite-like) microstructure. The main phase is cubic β-Ti phase (Im3m) but hexagonal α-Ti (P63/mmc), cubic TiPd (Pm3m), cubic PdZr (Fm3m), and hexagonal (Ti, Zr)5Si3 (P63/mmc) phases are also present. Nanoindentation experiments show that the Ti45Zr15Pd30Si5Nb5 sample exhibits lower Young's modulus than Ti45Zr15Pd35Si5. Conversely, Ti45Zr15Pd35Si5 is mechanically harder. Actually, both alloys exhibit larger values of hardness when compared with commercial Ti-40Nb, (HTi-Zr-Pd-Si ≈ 14 GPa, HTi-Zr-Pd-Si-Nb ≈ 10 GPa and HTi-40Nb ≈ 2.7 GPa). Concerning the biological behaviour, preliminary results of cell viability performed on several Ti-Zr-Pd-Si-(Nb) discs indicate that the number of live cells is superior to 94% in both cases. The studied Ti-Zr-Pd-Si-(Nb) bulk metallic system is thus interesting for biomedical applications because of the outstanding mechanical properties (relatively low Young's modulus combined with large hardness), together with the excellent biocompatibility.