Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Yeung, Wing Kiu

  • Google
  • 1
  • 3
  • 57

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2013In vitro biological response of plasma electrolytically oxidized and plasma-sprayed hydroxyapatite coatings on Ti-6Al-4V alloy57citations

Places of action

Chart of shared publication
Reilly, Gwendolen C.
1 / 2 shared
Yerokhin, Aleksey
1 / 53 shared
Matthews, Allan
1 / 147 shared
Chart of publication period
2013

Co-Authors (by relevance)

  • Reilly, Gwendolen C.
  • Yerokhin, Aleksey
  • Matthews, Allan
OrganizationsLocationPeople

article

In vitro biological response of plasma electrolytically oxidized and plasma-sprayed hydroxyapatite coatings on Ti-6Al-4V alloy

  • Yeung, Wing Kiu
  • Reilly, Gwendolen C.
  • Yerokhin, Aleksey
  • Matthews, Allan
Abstract

<p>Plasma electrolytic oxidation (PEO) is a relatively new surface modification process that may be used as an alternative to plasma spraying methods to confer bioactivity to Ti alloy implants. The aim of this study was to compare physical, chemical and biological surface characteristics of two coatings applied by PEO processes, containing different calcium phosphate (CaP) and titanium dioxide phases, with a plasma-sprayed hydroxyapatite (HA) coating. Coating characteristics were examined by X-ray diffraction, energy dispersive X-ray spectroscopy, scanning electron microscopy, surface profilometry, and wettability tests. The biological properties were determined using the human osteoblastic cell line MG-63 to assess cell viability, calcium and collagen synthesis. The tests showed that PEO coatings are significantly more hydrophilic (6%) and have 78% lower surface roughness (Ra) than the plasma-sprayed coatings. Cell behavior was demonstrated to be strongly dependent on the phase composition and surface distribution of elements in the PEO coating. MG-63 viability for the TiO<sub>2</sub>-based PEO coating containing amorphous CaPs was significantly lower than that for the PEO coating containing crystalline HA and the plasma-sprayed coating. However, collagen synthesis on both the CaP and the TiO<sub>2</sub> PEO coatings was significantly higher (92% and 71%, respectively) than on the plasma-sprayed coating after 14 days. PEO has been demonstrated to be a promising method for coating of orthopedic implant surfaces.</p>

Topics
  • impedance spectroscopy
  • surface
  • amorphous
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • titanium
  • Calcium
  • plasma spraying
  • X-ray spectroscopy
  • bioactivity
  • profilometry