People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gomes, Ps
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2021Assessment of the Bone Healing Process Mediated by Periosteum-Derived Mesenchymal Stem Cells' Secretome and a Xenogenic Bioceramic-An In Vivo Study in the Rabbit Critical Size Calvarial Defect Model.citations
- 2018Processing, characterization, and in vivo evaluation of poly (L-lactic acid)-fish gelatin electrospun membranes for biomedical applicationscitations
- 2018Development of bioactive tellurite-lanthanide ions-reinforced hydroxyapatite composites for biomedical and luminescence applicationscitations
- 2017Incorporation of glass-reinforced hydroxyapatite microparticles into poly(lactic acid) electrospun fibre mats for biomedical applicationscitations
- 2016Effect of Sterilization Methods on Electrospun Poly(lactic acid) (PLA) Fiber Alignment for Biomedical Applicationscitations
- 2015Smart electroconductive bioactive ceramics to promote in situ electrostimulation of bonecitations
- 2015Novel cerium doped glass-reinforced hydroxyapatite with antibacterial and osteoconductive properties for bone tissue regenerationcitations
- 2014Processing strategies for smart electroconductive carbon nanotube-based bioceramic bone graftscitations
- 2013Development and characterization of lanthanides doped hydroxyapatite composites for bone tissue applicationcitations
- 2012Development and Characterization of Ag2O-Doped ZnLB Glasses and Biological Assessment of Ag2O-ZnLB-Hydroxyapatite Compositescitations
- 2010Evaluation of human osteoblastic cell response to plasma-sprayed silicon-substituted hydroxyapatite coatings over titanium substratescitations
- 2010New titanium and titanium/hydroxyapatite coatings on ultra-high-molecular-weight polyethylene-in vitro osteoblastic performancecitations
- 2009Assessment of the osteoblastic cell response to a zinc glass reinforced hydroxyapatite composite (Zn-GRHA)citations
- 2008Biocompatibility evaluation of DLC-coated Si3N4 substrates for biomedical applicationscitations
Places of action
Organizations | Location | People |
---|
article
Evaluation of human osteoblastic cell response to plasma-sprayed silicon-substituted hydroxyapatite coatings over titanium substrates
Abstract
Silicon-substituted hydroxyapatite (Si-HA) coatings have been plasma sprayed over titanium substrates (Ti-6Al-4V) aiming to improve the bioactivity of the constructs for bone tissue repair/regeneration. X-ray diffraction analysis of the coatings has shown that, previous to the thermal deposition, no secondary phases were formed due to the incorporation of 0.8 wt % Si into HA crystal lattice. Partial decomposition of hydroxyapatite, which lead to the formation of the more soluble phases of alpha- and beta-tricalcium phosphate and calcium oxide, and increase of amorphization level only occurred following plasma spraying. Human bone marrow-derived osteoblastic cells were used to assess the in vitro bio-compatibility of the constructs. Cells attached and grew well on the Si-HA coatings, putting in evidence an increased metabolic activity and alkaline phosphatase expression comparing to control, i.e., titanium substrates plasma sprayed with hydroxyapatite. Further, a trend for increased differentiation was also verified by the upregulation of osteogenesis-related genes, as well as by the augmented deposition of globular mineral deposits within established cell layers. Based on the present findings, plasma spraying of Si-HA coatings over titanium substrates demonstrates improved biological properties regarding cell proliferation and differentiation, comparing to HA coatings. This suggests that incorporation of Si into the HA lattice could enhance the biological behavior of the plasma-sprayed coating. (C) 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 94B: 337-346, 2010.