People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vijayaraghavan, Aravind S.
University of Manchester
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Investigating the Effects of Graphene Nanoplatelets (GNPs) and external Waterbased Crosslinker (eWCL) on the Mechanical and Thermal properties of Waterbased Elastomer (WBE) Nanocomposites
- 2023Graphene Nanoplatelets (GNPs) Enhanced Water-based Elastomer Nanocomposites -tailored production from Nanoscale to Macrostructures
- 2021Hybrid molecular/mineral lyotropic liquid crystal system of CTAB and graphene oxide in watercitations
- 2021Graphene and Water-Based Elastomer Nanocomposites – A Reviewcitations
- 2021High-grip and hard-wearing graphene reinforced polyurethane coatings
- 2018Study on the formation of thin film nanocomposite (TFN) membranes of polymers of intrinsic microporosity and graphene-like fillers: effect of lateral flake size and chemical functionalizationcitations
- 2018Impeded physical aging in PIM-1 membranes containing graphene-like fillerscitations
- 2018Graphene oxide films for field effect surface passivation of silicon for solar cellscitations
- 2018Ternary nanocomposites of reduced graphene oxide, polyaniline and hexaniobate: hierarchical architecture and high polaron formationcitations
- 2017Enhanced organophilic separations with mixed matrix membranes of polymers of intrinsic microporosity and graphene-like fillerscitations
- 2016Graphene and water-based elastomers thin-film composites by dip-mouldingcitations
- 2013Charge transfer at junctions of a single layer of graphene and a metallic single walled carbon nanotube.citations
- 2006Ionic liquid-derived blood-compatible composite membranes for kidney dialysiscitations
- 2005Synthesis and characterization of thickness-aligned carbon nanotube - polymer composite filmscitations
- 2005Embedded carbon-nanotube-stiffened polymer surfacescitations
Places of action
Organizations | Location | People |
---|
article
Ionic liquid-derived blood-compatible composite membranes for kidney dialysis
Abstract
A novel heparin- and cellulose-based biocomposite is fabricated by exploiting the enhanced dissolution of polysaccharides in room temperature ionic liquids (RTILs). This represents the first reported example of using a new class of solvents, RTILs, to fabricate blood-compatible biomaterials. Using this approach, it is possible to fabricate the biomaterials in any form, such as films or membranes, fibers (nanometer- or micron-sized), spheres (nanometer- or micron-sized), or any shape using templates. In this work, we have evaluated a membrane film of this composite. Surface morphological studies on this biocomposite film showed the uniformly distributed presence of heparin throughout the cellulose matrix. Activated partial thromboplastin time and thromboelastography demonstrate that this composite is superior to other existing heparinized biomaterials in preventing clot formation in human blood plasma and in human whole blood. Membranes made of these composites allow the passage of urea while retaining albumin, representing a promising blood-compatible biomaterial for renal dialysis, with a possibility of eliminating the systemic administration of heparin to the patients undergoing renal dialysis. © 2006 Wiley Periodicals, Inc.