Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Barrera, Miguel

  • Google
  • 2
  • 6
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Electrical impedance characterization and modelling of Ti-Β implantscitations
  • 2024Electrical impedance characterization and modelling of Ti‐Β implantscitations

Places of action

Chart of shared publication
Navarro González, Paula
1 / 4 shared
Torres Hernández, Yadir
1 / 34 shared
Olmo Fernández, Alberto
1 / 3 shared
Navarro, Paula
1 / 3 shared
Olmo, Alberto
1 / 3 shared
Torres, Yadir
1 / 18 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Navarro González, Paula
  • Torres Hernández, Yadir
  • Olmo Fernández, Alberto
  • Navarro, Paula
  • Olmo, Alberto
  • Torres, Yadir
OrganizationsLocationPeople

article

Electrical impedance characterization and modelling of Ti‐Β implants

  • Navarro, Paula
  • Olmo, Alberto
  • Barrera, Miguel
  • Torres, Yadir
Abstract

<jats:title>Abstract</jats:title><jats:p>Commercially pure titanium (c.p. Ti) and Ti6Al4V alloys are the most widely used metallic biomaterials in the biomedical sector. However, their high rigidity and the controversial toxicity of their alloying elements often compromise their clinical success. The use of porous β‐Titanium alloys is proposed as a solution to these issues. In this regard, it is necessary to implement economic, repetitive, and non‐destructive measurement techniques that allow for the semi‐quantitative evaluation of the chemical nature of the implant, its microstructural characteristics, and/or surface changes. This study proposes the use of simple measurement protocols based on electrical impedance measurements, correlating them with the porosity inherent to processing conditions (pressure and temperature), as well as the chemical composition of the implant. Results revealed a clear direct relationship between porosity and electrical impedance. The percentage and/or size of the porosity decrease with an increase in compaction pressure and temperature. Moreover, there is a notable influence of the frequency used in the measurements obtained. Additionally, the sensitivity of this measurement technique has enabled the evaluation of differences in chemical composition and the detection of intermetallics in the implants. For the first time in the literature, this research establishes relationships between stiffness and electrical impedance, using approximations and models for the observed trends. All the results obtained corroborate the appropriateness of the technique to achieve the real‐time characterization of Titanium implants, in an efficient and non‐invasive way.</jats:p>

Topics
  • porous
  • impedance spectroscopy
  • surface
  • chemical composition
  • titanium
  • porosity
  • intermetallic
  • toxicity
  • biomaterials
  • commercially pure titanium