Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Babuska, Tomas F.

  • Google
  • 5
  • 30
  • 143

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2024Solvent‐cast <scp>3D</scp> printing with molecular weight polymer blends to decouple effects of scaffold architecture and mechanical properties on mesenchymal stromal cell fate5citations
  • 2022Quality Control Metrics to Assess MoS2 Sputtered Films for Tribological Applications15citations
  • 2021Plasma-enhanced atomic layer deposition of titanium molybdenum nitride: Influence of RF bias and substrate structure3citations
  • 2021Plasma enhanced atomic layer deposition of titanium nitride-molybdenum nitride solid solutions8citations
  • 2018Achieving Ultralow Wear with Stable Nanocrystalline Metals112citations

Places of action

Chart of shared publication
French, Tyler
1 / 1 shared
Tolbert, John W.
1 / 1 shared
Gonzalez-Fernandez, Tomas
1 / 1 shared
Lazarte, Santiago
1 / 1 shared
Hammerstone, Diana E.
1 / 1 shared
Okpara, Chiebuka
1 / 1 shared
Kitson, Andrew
1 / 1 shared
Lu, Ping
2 / 6 shared
Strandwitz, Nicholas C.
3 / 3 shared
Xin, Yan
1 / 3 shared
Doll, Gary L.
1 / 1 shared
Chowdhury, Md Istiaque
1 / 1 shared
Delrio, Frank W.
1 / 1 shared
Grejtak, Tomas
2 / 2 shared
Curry, John F.
2 / 3 shared
Dugger, Michael T.
2 / 3 shared
Jones, Morgan R.
1 / 2 shared
Chrostowski, Robert
1 / 1 shared
Mangolini, Filippo
1 / 2 shared
Sowa, Mark
2 / 2 shared
Haik, Jewel
1 / 1 shared
Adams, David P.
1 / 2 shared
Nation, Brendan
1 / 2 shared
Furnish, Timothy A.
1 / 1 shared
Chandross, Michael
1 / 4 shared
Argibay, Nicolas
1 / 3 shared
Boyce, Brad L.
1 / 8 shared
Schuh, Christopher A.
1 / 4 shared
Kustas, Andrew B.
1 / 4 shared
Clark, Blythe G.
1 / 1 shared
Chart of publication period
2024
2022
2021
2018

Co-Authors (by relevance)

  • French, Tyler
  • Tolbert, John W.
  • Gonzalez-Fernandez, Tomas
  • Lazarte, Santiago
  • Hammerstone, Diana E.
  • Okpara, Chiebuka
  • Kitson, Andrew
  • Lu, Ping
  • Strandwitz, Nicholas C.
  • Xin, Yan
  • Doll, Gary L.
  • Chowdhury, Md Istiaque
  • Delrio, Frank W.
  • Grejtak, Tomas
  • Curry, John F.
  • Dugger, Michael T.
  • Jones, Morgan R.
  • Chrostowski, Robert
  • Mangolini, Filippo
  • Sowa, Mark
  • Haik, Jewel
  • Adams, David P.
  • Nation, Brendan
  • Furnish, Timothy A.
  • Chandross, Michael
  • Argibay, Nicolas
  • Boyce, Brad L.
  • Schuh, Christopher A.
  • Kustas, Andrew B.
  • Clark, Blythe G.
OrganizationsLocationPeople

article

Solvent‐cast <scp>3D</scp> printing with molecular weight polymer blends to decouple effects of scaffold architecture and mechanical properties on mesenchymal stromal cell fate

  • Babuska, Tomas F.
  • French, Tyler
  • Tolbert, John W.
  • Gonzalez-Fernandez, Tomas
  • Lazarte, Santiago
  • Hammerstone, Diana E.
  • Okpara, Chiebuka
  • Kitson, Andrew
Abstract

<jats:title>Abstract</jats:title><jats:p>The biochemical and physical properties of a scaffold can be tailored to elicit specific cellular responses. However, it is challenging to decouple their individual effects on cell‐material interactions. Here, we solvent‐cast 3D printed different ratios of high and low molecular weight (MW) poly(caprolactone) (PCL) to fabricate scaffolds with significantly different stiffnesses without affecting other properties. Ink viscosity was used to match processing conditions between inks and generate scaffolds with the same surface chemistry, crystallinity, filament diameter, and architecture. Increasing the ratio of low MW PCL resulted in a significant decrease in modulus. Scaffold modulus did not affect human mesenchymal stromal cell (hMSC) differentiation under osteogenic conditions. However, hMSC response was significantly affected by scaffold stiffness in chondrogenic media. Low stiffness promoted more stable chondrogenesis whereas high stiffness drove hMSC progression toward hypertrophy. These data illustrate how this versatile platform can be used to independently modify biochemical and physical cues in a single scaffold to synergistically enhance desired cellular response.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • viscosity
  • molecular weight
  • crystallinity
  • polymer blend