People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Echeverry-Rendon, Monica
IMDEA Materials
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Cytocompatibility, cell‐material interaction, and osteogenic differentiation of MC3T3‐E1 pre‐osteoblasts in contact with engineered Mg/PLA compositescitations
- 2020Effect of surface characteristics on the antibacterial properties of titanium dioxide nanotubes produced in aqueous electrolytes with carboxymethyl cellulose.citations
- 2019Considerations about sterilization of samples of pure magnesium modified by plasma electrolytic oxidationcitations
- 2019Coatings for biodegradable magnesium-based supports for therapy of vascular diseasecitations
- 2018Formation of nanotubular TiO2 structures with varied surface characteristics for biomaterial applicationscitations
- 2018Improved corrosion resistance of commercially pure magnesium after its modification by plasma electrolytic oxidation with organic additivescitations
- 2018Novel coatings obtained by plasma electrolytic oxidation to improve the corrosion resistance of magnesium-based biodegradable implantscitations
- 2018Balancing biofunctional and biomechanical properties using porous titanium reinforced by carbon nanotubes.citations
- 2017Modification of titanium alloys surface properties by plasma electrolytic oxidation (PEO) and influence on biological response.citations
- 2015Osseointegration improvement by plasma electrolytic oxidation of modified titanium alloys surfaces.citations
Places of action
Organizations | Location | People |
---|
article
Effect of surface characteristics on the antibacterial properties of titanium dioxide nanotubes produced in aqueous electrolytes with carboxymethyl cellulose.
Abstract
Nanotubular structures were produced on a commercially pure titanium surface by anodization in an aqueous electrolyte that contained carboxymethyl cellulose and sodium fluoride. The internal diameters obtained were about 100, 48, and 9.5 nm, respectively. Several heat treatments at 200, 350, and 600°C were made to produce nanotubes with different titanium dioxide polymorphs (anatase, rutile). All tested surfaces were superhydrophilic, this behavior was maintained after at least 30 days, regardless of the heat treatment. Although in previous works the nanotube features effect on the bacteria behavior had been studied; this item still unclear. For the best of our knowledge, the effect of small internal diameters (about 10 nm) with and without heat treatment and with and without ultraviolet (UV) irradiation on the bacteria strains comportment has not been reported. From our results, both the internal diameter and the postanodized treatments have an effect on the bacteria strains comportment. All nanotubular coatings UV treated and heat treated at 350 and 600°C; despite they have different inner diameters, inhibit the bacteria growth of both Staphylococcus aureus and Pseudomonas aeruginosa strains. The nanotubular coatings obtained at 20 V and heat treated at 350°C produced the lower bacteria adhesion against both strains evaluated.