People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Echeverry-Rendon, Monica
IMDEA Materials
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Cytocompatibility, cell‐material interaction, and osteogenic differentiation of MC3T3‐E1 pre‐osteoblasts in contact with engineered Mg/PLA compositescitations
- 2020Effect of surface characteristics on the antibacterial properties of titanium dioxide nanotubes produced in aqueous electrolytes with carboxymethyl cellulose.citations
- 2019Considerations about sterilization of samples of pure magnesium modified by plasma electrolytic oxidationcitations
- 2019Coatings for biodegradable magnesium-based supports for therapy of vascular diseasecitations
- 2018Formation of nanotubular TiO2 structures with varied surface characteristics for biomaterial applicationscitations
- 2018Improved corrosion resistance of commercially pure magnesium after its modification by plasma electrolytic oxidation with organic additivescitations
- 2018Novel coatings obtained by plasma electrolytic oxidation to improve the corrosion resistance of magnesium-based biodegradable implantscitations
- 2018Balancing biofunctional and biomechanical properties using porous titanium reinforced by carbon nanotubes.citations
- 2017Modification of titanium alloys surface properties by plasma electrolytic oxidation (PEO) and influence on biological response.citations
- 2015Osseointegration improvement by plasma electrolytic oxidation of modified titanium alloys surfaces.citations
Places of action
Organizations | Location | People |
---|
article
Balancing biofunctional and biomechanical properties using porous titanium reinforced by carbon nanotubes.
Abstract
Despite the well-known advantages of the titanium-based implant systems, they still lack an optimal balance between biofunctionality and mechanical strength, especially regarding the modulation of cellular response and a desired implant osseointegration. In this work, we fabricated a nanocomposite based on porous commercially pure grade 4 titanium (c.p. Ti) reinforced with carbon nanotubes (CNT) at 5% and 10% w/w, with the aim of obtaining a nanocomposite with lower stiffness compared to traditional titanium-based implants and with the mechanical strength and bioactivity owed by the CNT. Results obtained by scanning electron microscopy, X-ray photoelectron spectroscopy, and atomic force microscopy characterization showed that the CNT dispersed and incorporated into the porous c.p. Ti matrix. Interestingly, CNT were associated with a higher twining within neighbor Ti grains, which was indeed consistent with an increased in nano-hardness. Biological evaluation by MTT and Comet assay revealed that the nanocomposites did not induce genotoxicity and cytotoxicity on two different cells lines despite the presence of nickel at the surface. Accordingly, a purification step would be required before these CNT can be used for biomedical applications. Our results indicate that incorporation of CNT into porous c.p. Ti is a promising avenue to achieve an adequate balance between biofunctionality and mechanical strength in Ti-based scaffolds for tissue replacement. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 719-731, 2019.