Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ortiz, Isabel

  • Google
  • 1
  • 6
  • 47

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Development of novel three-dimensional scaffolds based on bacterial nanocellulose for tissue engineering and regenerative medicine47citations

Places of action

Chart of shared publication
Osorio Delgado, Marlon Andrés
1 / 4 shared
Zuluaga, Robin
1 / 18 shared
Herazo, Cristina Isabel Castro
1 / 15 shared
Rojo, Piedad Felisinda Gañán
1 / 34 shared
Fernández-Morales, Patricia
1 / 3 shared
Kerguelen, Herbert
1 / 2 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Osorio Delgado, Marlon Andrés
  • Zuluaga, Robin
  • Herazo, Cristina Isabel Castro
  • Rojo, Piedad Felisinda Gañán
  • Fernández-Morales, Patricia
  • Kerguelen, Herbert
OrganizationsLocationPeople

article

Development of novel three-dimensional scaffolds based on bacterial nanocellulose for tissue engineering and regenerative medicine

  • Osorio Delgado, Marlon Andrés
  • Zuluaga, Robin
  • Herazo, Cristina Isabel Castro
  • Rojo, Piedad Felisinda Gañán
  • Fernández-Morales, Patricia
  • Kerguelen, Herbert
  • Ortiz, Isabel
Abstract

<p>Despite the efforts focused on manufacturing biological engineering scaffolds for tissue engineering and regenerative medicine, a biomaterial that meets the necessary characteristics for these applications has not been developed to date. Bacterial nanocellulose (BNC) is an outstanding biomaterial for tissue engineering and regenerative medicine; however, BNC's applications have been focused on two-dimensional (2D) medical devices, such as wound dressings. Given the need for three-dimensional (3D) porous biomaterials, this work evaluates two methods to generate (3D) BNC scaffolds. The structural characteristics and physicochemical, mechanical, and cell behaviour properties were evaluated. Likewise, the effects of the pore size and surface area in the mechanical performance of BNC biomaterials and their cell response in a fibroblast cell line are discussed for the first time. In this study, a new method is proposed for the development of 3D BNC scaffolds using paraffin wax. This new method is less time-consuming, more robust in removing the paraffin and less aggressive toward the BNC microstructure. Moreover, the biomaterial had regular porosity with good mechanical behaviour; the cells can adhere and increase in number without overcrowding. Regarding the pore size and surface area, highly interconnected porosities (measuring approximately 60 μm) and high surface area are advantageous for the biomaterial's mechanical properties and cell behaviour.</p>

Topics
  • porous
  • impedance spectroscopy
  • pore
  • surface
  • laser emission spectroscopy
  • two-dimensional
  • porosity
  • biomaterials