Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Harmsen, Martin C.

  • Google
  • 10
  • 33
  • 307

University Medical Center Groningen

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2023Organ-Derived Extracellular Matrix (ECM) Hydrogels: Versatile Systems to Investigate the Impact of Biomechanics and Biochemistry on Cells in Disease Pathology5citations
  • 2022Viscoelastic properties of plasma-agarose hydrogels dictate favorable fibroblast responses for skin tissue engineering applications19citations
  • 2019Considerations about sterilization of samples of pure magnesium modified by plasma electrolytic oxidation2citations
  • 2019Coatings for biodegradable magnesium-based supports for therapy of vascular disease:A general view76citations
  • 2019Coatings for biodegradable magnesium-based supports for therapy of vascular disease76citations
  • 2018Formation of nanotubular TiO2 structures with varied surface characteristics for biomaterial applications22citations
  • 2018Formation of nanotubular TiO2 structures with varied surface characteristics for biomaterial applications22citations
  • 2018Improved corrosion resistance of commercially pure magnesium after its modification by plasma electrolytic oxidation with organic additives29citations
  • 2018Novel coatings obtained by plasma electrolytic oxidation to improve the corrosion resistance of magnesium-based biodegradable implants34citations
  • 2011The tissue response to photopolymerized PEG-p(HPMAm-lactate)-based hydrogels22citations

Places of action

Chart of shared publication
Nizamoglu, Mehmet
1 / 1 shared
Burgess, Janette
1 / 1 shared
Getova, Vasilena
1 / 1 shared
Martinez Garcia, Francisco Drusso
2 / 3 shared
Van Dongen, Joris
1 / 1 shared
Zhang, Meng
1 / 1 shared
Zhao, Fenghua
1 / 1 shared
Vargas, Maria Isabel Patiño
1 / 1 shared
Van Kooten, Theo
1 / 2 shared
Becerra, Natalia Y.
1 / 1 shared
Offens, Freya
1 / 1 shared
Sharma, Prashant K.
1 / 17 shared
Restrepo, Luz M.
1 / 1 shared
Echeverry-Rendon, Monica
5 / 10 shared
Duque, Valentina
3 / 3 shared
Quintero, David
5 / 5 shared
Echeverria, Felix
5 / 7 shared
Allain, Jean Paul
2 / 3 shared
Echeverry-Rendon, Mónica
1 / 1 shared
Robledo, Sara M.
3 / 3 shared
Félix Echeverría, E.
1 / 1 shared
Robledo, Sara
2 / 2 shared
Castaño, Juan G.
2 / 2 shared
Aguirre, Robinson
2 / 2 shared
Echeverry-Rendón, Mónica
1 / 2 shared
Félix, Echeverría E.
1 / 1 shared
Hennink, Wim E.
1 / 18 shared
Nostrum, Cornelus F. Van
1 / 1 shared
Van Putten, Sander
1 / 1 shared
Censi, Roberta
1 / 8 shared
Martino, Piera Di
1 / 5 shared
Bank, Ruud
1 / 1 shared
Vermonden, Tina
1 / 14 shared
Chart of publication period
2023
2022
2019
2018
2011

Co-Authors (by relevance)

  • Nizamoglu, Mehmet
  • Burgess, Janette
  • Getova, Vasilena
  • Martinez Garcia, Francisco Drusso
  • Van Dongen, Joris
  • Zhang, Meng
  • Zhao, Fenghua
  • Vargas, Maria Isabel Patiño
  • Van Kooten, Theo
  • Becerra, Natalia Y.
  • Offens, Freya
  • Sharma, Prashant K.
  • Restrepo, Luz M.
  • Echeverry-Rendon, Monica
  • Duque, Valentina
  • Quintero, David
  • Echeverria, Felix
  • Allain, Jean Paul
  • Echeverry-Rendon, Mónica
  • Robledo, Sara M.
  • Félix Echeverría, E.
  • Robledo, Sara
  • Castaño, Juan G.
  • Aguirre, Robinson
  • Echeverry-Rendón, Mónica
  • Félix, Echeverría E.
  • Hennink, Wim E.
  • Nostrum, Cornelus F. Van
  • Van Putten, Sander
  • Censi, Roberta
  • Martino, Piera Di
  • Bank, Ruud
  • Vermonden, Tina
OrganizationsLocationPeople

article

Formation of nanotubular TiO2 structures with varied surface characteristics for biomaterial applications

  • Félix Echeverría, E.
  • Robledo, Sara
  • Harmsen, Martin C.
  • Echeverry-Rendon, Monica
  • Castaño, Juan G.
  • Aguirre, Robinson
  • Quintero, David
Abstract

<p>Nanotubular structures were generated on the surface of titanium c.p. by anodization technique in an aqueous solution of acetic acid (14% v/v) with different sources of fluoride ion (HF, NaF, NH4 F). The aim of using these three different compounds is to study the effect of the counterion (H+ , Na+ and NH4+ ) on the morphology, wettability and surface free energy of the modified surface. Nanotubes were generated at 10 and 15 V for each anodizing solution. To further improve surface characteristics, the samples were heat-treated at 600°C for 4 hours and at 560°C for 3 hours. SEM images revealed the formation of nanotubes in all anodizing conditions, while their diameter increased proportionally to the electric potential. X-ray diffraction and micro-Raman spectroscopy results showed the presence of both anatase and rutile phases, with a higher content of rutile in the coatings obtained using NH4 F and an applied potential of 10 V. The heat-treatment significantly increased the wettability of the anodic coatings, especially for the coating obtained at 15 V with HF, which showed values &lt; 7 degrees of contact angle. Besides, the nanotubes show a decrease in diameter due to the heat treatment, except for the nanotubes formed in NH4 F. Depending on their surface properties (e.g. low contact angle and high surface free energy), these coatings potentially have great potential in biomedical applications, sensors devices, and catalytic applications among others. This article is protected by copyright. All rights reserved.</p>

Topics
  • impedance spectroscopy
  • surface
  • compound
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • nanotube
  • titanium
  • Raman spectroscopy