People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Harmsen, Martin C.
University Medical Center Groningen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023Organ-Derived Extracellular Matrix (ECM) Hydrogels: Versatile Systems to Investigate the Impact of Biomechanics and Biochemistry on Cells in Disease Pathologycitations
- 2022Viscoelastic properties of plasma-agarose hydrogels dictate favorable fibroblast responses for skin tissue engineering applicationscitations
- 2019Considerations about sterilization of samples of pure magnesium modified by plasma electrolytic oxidationcitations
- 2019Coatings for biodegradable magnesium-based supports for therapy of vascular disease:A general viewcitations
- 2019Coatings for biodegradable magnesium-based supports for therapy of vascular diseasecitations
- 2018Formation of nanotubular TiO2 structures with varied surface characteristics for biomaterial applicationscitations
- 2018Formation of nanotubular TiO2 structures with varied surface characteristics for biomaterial applicationscitations
- 2018Improved corrosion resistance of commercially pure magnesium after its modification by plasma electrolytic oxidation with organic additivescitations
- 2018Novel coatings obtained by plasma electrolytic oxidation to improve the corrosion resistance of magnesium-based biodegradable implantscitations
- 2011The tissue response to photopolymerized PEG-p(HPMAm-lactate)-based hydrogelscitations
Places of action
Organizations | Location | People |
---|
article
Formation of nanotubular TiO2 structures with varied surface characteristics for biomaterial applications
Abstract
<p>Nanotubular structures were generated on the surface of titanium c.p. by anodization technique in an aqueous solution of acetic acid (14% v/v) with different sources of fluoride ion (HF, NaF, NH4 F). The aim of using these three different compounds is to study the effect of the counterion (H+ , Na+ and NH4+ ) on the morphology, wettability and surface free energy of the modified surface. Nanotubes were generated at 10 and 15 V for each anodizing solution. To further improve surface characteristics, the samples were heat-treated at 600°C for 4 hours and at 560°C for 3 hours. SEM images revealed the formation of nanotubes in all anodizing conditions, while their diameter increased proportionally to the electric potential. X-ray diffraction and micro-Raman spectroscopy results showed the presence of both anatase and rutile phases, with a higher content of rutile in the coatings obtained using NH4 F and an applied potential of 10 V. The heat-treatment significantly increased the wettability of the anodic coatings, especially for the coating obtained at 15 V with HF, which showed values < 7 degrees of contact angle. Besides, the nanotubes show a decrease in diameter due to the heat treatment, except for the nanotubes formed in NH4 F. Depending on their surface properties (e.g. low contact angle and high surface free energy), these coatings potentially have great potential in biomedical applications, sensors devices, and catalytic applications among others. This article is protected by copyright. All rights reserved.</p>