Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kun, Xiao

  • Google
  • 1
  • 6
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015In vivo biocompatibility of custom-fabricated apatite-wollastonite-mesenchymal stromal cell constructs10citations

Places of action

Chart of shared publication
Wood, David J.
1 / 3 shared
Knight, Charlotte A.
1 / 1 shared
Genever, Paul
1 / 3 shared
Yang, Xuebin B.
1 / 1 shared
Lee, Jennifer A.
1 / 1 shared
Dalgarno, Kenneth W.
1 / 3 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Wood, David J.
  • Knight, Charlotte A.
  • Genever, Paul
  • Yang, Xuebin B.
  • Lee, Jennifer A.
  • Dalgarno, Kenneth W.
OrganizationsLocationPeople

article

In vivo biocompatibility of custom-fabricated apatite-wollastonite-mesenchymal stromal cell constructs

  • Wood, David J.
  • Kun, Xiao
  • Knight, Charlotte A.
  • Genever, Paul
  • Yang, Xuebin B.
  • Lee, Jennifer A.
  • Dalgarno, Kenneth W.
Abstract

<p>We have used the additive manufacturing technology of selective laser sintering (SLS), together with post SLS heat treatment, to produce porous three dimensional scaffolds from the glass-ceramic apatite-wollastonite (A-W). The A-W scaffolds were custom-designed to incorporate a cylindrical central channel to increase cell penetration and medium flow to the center of the scaffolds under dynamic culture conditions during in vitro testing and subsequent in vivo implantation. The scaffolds were seeded with human bone marrow mesenchymal stromal cells (MSCs) and cultured in spinner flasks. Using confocal and scanning electron microscopy, we demonstrated that MSCs formed and maintained a confluent layer of viable cells on all surfaces of the A-W scaffolds during dynamic culture. MSC-seeded, with and without osteogenic pre-differentiation, and unseeded A-W scaffolds were implanted subcutaneously in MF1 nude mice where osteoid formation and tissue in-growth were observed following histological assessment. The results demonstrate that the in vivo biocompatibility and osteo-supportive capacity of A-W scaffolds can be enhanced by SLS-custom design, without the requirement for osteogenic pre-induction, to advance their potential as patient-specific bone replacement materials. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2015.</p>

Topics
  • porous
  • surface
  • scanning electron microscopy
  • glass
  • glass
  • ceramic
  • sintering
  • laser sintering
  • biocompatibility
  • static light scattering