Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hoyer, B.

  • Google
  • 1
  • 6
  • 52

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2013Heparin modification of a biomimetic bone matrix for controlled release of VEGF52citations

Places of action

Chart of shared publication
Knaack, S.
1 / 2 shared
Gabrielyan, A.
1 / 1 shared
Gelinsky, Michael
1 / 35 shared
Lode, A.
1 / 7 shared
Roeder, I.
1 / 1 shared
Rösen-Wolff, A.
1 / 4 shared
Chart of publication period
2013

Co-Authors (by relevance)

  • Knaack, S.
  • Gabrielyan, A.
  • Gelinsky, Michael
  • Lode, A.
  • Roeder, I.
  • Rösen-Wolff, A.
OrganizationsLocationPeople

article

Heparin modification of a biomimetic bone matrix for controlled release of VEGF

  • Knaack, S.
  • Gabrielyan, A.
  • Gelinsky, Michael
  • Hoyer, B.
  • Lode, A.
  • Roeder, I.
  • Rösen-Wolff, A.
Abstract

Bone regeneration using tissue engineered constructs requires strategies to effectively stimulate vascularization within such a construct that is crucial for its supply and integration with the host tissue. In this work, porous scaffolds of a collagen/hydroxyapatite nanocomposite were modified with heparin to generate biomimetic bone matrices which are able to release angiogenic factors in a controlled manner. Heparin was either integrated during material synthesis (in situ) or added to the scaffolds after their fabrication (post). Both approaches resulted in stable incorporation of heparin into the matrix of mineralized collagen. Investigations of binding and release of the vascular endothelial growth factor (VEGF-A165) loaded onto the scaffolds revealed an enhanced binding capacity as well as a sustained and nearly constant delivery of VEGF as result of both heparin modification methods. The release rate could be controlled by varying the quantity of incorporated heparin and the modification method. Although the biological activity of VEGF released after 7 days from the unmodified scaffolds was reduced in comparison to control VEGF, it was maintained after release from post or even enhanced after release from in situ modified scaffolds. In conclusion, the heparin-modified scaffolds of mineralized collagen exhibited favorable growth factor binding and release properties and may be beneficial to stimulate vascularization.

Topics
  • porous
  • nanocomposite
  • impedance spectroscopy