People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ferraz, Mp
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2019Inhibitory Effect of 5-Aminoimidazole-4-Carbohydrazonamides Derivatives Against Candida spp. Biofilm on Nanohydroxyapatite Substratecitations
- 2015Novel cerium doped glass-reinforced hydroxyapatite with antibacterial and osteoconductive properties for bone tissue regenerationcitations
- 2014Modulation of human dermal microvascular endothelial cell and human gingival fibroblast behavior by micropatterned silica coating surfaces for zirconia dental implant applicationscitations
- 2014Influence of nanohydroxyapatite surface properties on Staphylococcus epidermidis biofilm formationcitations
- 2012Adhesion of Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa onto nanohydroxyapatite as a bone regeneration materialcitations
- 2008PLD bioactive ceramic films: the influence of CaO-P(2)O(5) glass additions to hydroxyapatite on the proliferation and morphology of osteblastic like-cellscitations
Places of action
Organizations | Location | People |
---|
article
Adhesion of Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa onto nanohydroxyapatite as a bone regeneration material
Abstract
In orthopedics due to the enormous number of surgical procedures involving invasive implant biomaterials, infections have a huge impact in terms of morbidity, mortality, and medical costs. In this study the initial adhesion of several strains namely Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa, to nanohydroxyapatite, previously heat-treated at 725 degrees C and 1000 degrees C was assessed. Adherent cells were evaluated by scanning electron microscopy and quantified by confocal laser scanning microscopy and as colony forming units after being released by sonication. The wettability and roughness of samples surfaces were assessed by contact angle measurements and atomic force microscopy, respectively. Nanohydroxyapatite heat-treated at 1000 degrees C appeared to be more resistant to bacterial adhesion, over time, in five of the six tested strains while the clinical strains isolated from orthopedic infections presented superior ability to adhere, as well as better capacity to produce slime. The increase in materials sintering temperature resulted in increased hydrophobicity and roughness; however, other surface features such as the decrease in surface area and on porosity as well as the decrease on zeta potential may be the aspects that contributed to a lower bacterial adhesion on the materials sintered at 1000 degrees C. (C) 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2012.