Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Manso, Mc

  • Google
  • 1
  • 2
  • 19

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2012Adhesion of Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa onto nanohydroxyapatite as a bone regeneration material19citations

Places of action

Chart of shared publication
Monteiro, Fj
1 / 15 shared
Ferraz, Mp
1 / 6 shared
Chart of publication period
2012

Co-Authors (by relevance)

  • Monteiro, Fj
  • Ferraz, Mp
OrganizationsLocationPeople

article

Adhesion of Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa onto nanohydroxyapatite as a bone regeneration material

  • Monteiro, Fj
  • Ferraz, Mp
  • Manso, Mc
Abstract

In orthopedics due to the enormous number of surgical procedures involving invasive implant biomaterials, infections have a huge impact in terms of morbidity, mortality, and medical costs. In this study the initial adhesion of several strains namely Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa, to nanohydroxyapatite, previously heat-treated at 725 degrees C and 1000 degrees C was assessed. Adherent cells were evaluated by scanning electron microscopy and quantified by confocal laser scanning microscopy and as colony forming units after being released by sonication. The wettability and roughness of samples surfaces were assessed by contact angle measurements and atomic force microscopy, respectively. Nanohydroxyapatite heat-treated at 1000 degrees C appeared to be more resistant to bacterial adhesion, over time, in five of the six tested strains while the clinical strains isolated from orthopedic infections presented superior ability to adhere, as well as better capacity to produce slime. The increase in materials sintering temperature resulted in increased hydrophobicity and roughness; however, other surface features such as the decrease in surface area and on porosity as well as the decrease on zeta potential may be the aspects that contributed to a lower bacterial adhesion on the materials sintered at 1000 degrees C. (C) 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2012.

Topics
  • surface
  • scanning electron microscopy
  • atomic force microscopy
  • forming
  • porosity
  • biomaterials
  • sintering
  • confocal laser scanning microscopy