Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Salgado, Cl

  • Google
  • 3
  • 9
  • 147

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Full physicochemical and biocompatibility characterization of a supercritical CO2 sterilized nano-hydroxyapatite/chitosan biodegradable scaffold for periodontal bone regeneration25citations
  • 2016Biodegradation, biocompatibility, and osteoconduction evaluation of collagen-nanohydroxyapatite cryogels for bone tissue regeneration59citations
  • 2012Biocompatibility and biodegradation of polycaprolactone-sebacic acid blended gels63citations

Places of action

Chart of shared publication
Dias, Mm
1 / 9 shared
Monteiro, Fj
2 / 15 shared
Manrique, Ya
1 / 2 shared
Souto Lopes, M.
1 / 1 shared
Fernandes, Mh
2 / 25 shared
Colaco, Bj
1 / 1 shared
Sanchez, Ems
1 / 1 shared
Granja, Pl
1 / 6 shared
Zavaglia, Cac
1 / 1 shared
Chart of publication period
2023
2016
2012

Co-Authors (by relevance)

  • Dias, Mm
  • Monteiro, Fj
  • Manrique, Ya
  • Souto Lopes, M.
  • Fernandes, Mh
  • Colaco, Bj
  • Sanchez, Ems
  • Granja, Pl
  • Zavaglia, Cac
OrganizationsLocationPeople

article

Biocompatibility and biodegradation of polycaprolactone-sebacic acid blended gels

  • Sanchez, Ems
  • Salgado, Cl
  • Granja, Pl
  • Zavaglia, Cac
Abstract

Tissue engineering aims at creating biological body parts as an alternative for transplanting tissues and organs. A current new approach for such materials consists in injectable biodegradable polymers. Their major advantages are the ability to fill-in defects, easy incorporation of therapeutic agents or cells, and the possibility of minimal invasive surgical procedures. Polycaprolactone (PCL) is a promising biodegradable and elastic biomaterial, with the drawback of low-degradation kinetics in vivo. In this work a biodegradable injectable gel of PCL blended with sebacic acid (SA) was prepared, to improve the degradation rate of the biomaterial. SA is known for its high degradation rate, although in high concentrations it could originate a pH decrease and thus disturb the biocompatibility of PCL. Degradation tests on phosphate buffered saline were carried out using 5% of SA on the blend and the biomaterial stability was evaluated after degradation using differential scanning calorimetry, dynamical mechanical analysis, and scanning electronic microscopy. After degradation the elastic properties of the blend decreased and the material became more crystalline and stiffer, although at a lower extent when compared with pure PCL. The blend also degraded faster with a loss of the crystalline phase on the beginning (30 days), although its thermal and mechanical properties remained comparable with those of the pure material, thus showing that it achieved the intended objectives. After cell assays the PCL-SA gel was shown to be cytocompatible and capable of maintaining high cell viability (over 90%). (C) 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 100A: 243-251, 2012.

Topics
  • impedance spectroscopy
  • polymer
  • crystalline phase
  • defect
  • differential scanning calorimetry
  • biocompatibility
  • microscopy