Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Chrzanowski, Wojciech

  • Google
  • 8
  • 32
  • 364

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2014Bioactive nanocomposite PLDL/nano-hydroxyapatite electrospun membranes for bone tissue engineering62citations
  • 2010Tailoring Cell Behavior on Polymers by the Incorporation of Titanium Doped Phosphate Glass Filler11citations
  • 2010<i>In vitro</i> studies on the influence of surface modification of Ni–Ti alloy on human bone cells26citations
  • 2009Structure and properties of strontium-doped phosphate-based glasses147citations
  • 2009Incorporation of vitamin E in poly(3hydroxybutyrate)/Bioglass composite films: effect on surface properties and cell attachment.30citations
  • 2009Doping of a high calcium oxide metaphosphate glass with titanium dioxide53citations
  • 2008Nanomechanical evaluation of nickel–titanium surface properties after alkali and electrochemical treatments21citations
  • 2008Chemical, Corrosion and Topographical Analysis of Stainless Steel Implants after Different Implantation Periods14citations

Places of action

Chart of shared publication
Kwiatkowski, Ryszard
1 / 3 shared
Menaszek, Elżbieta
1 / 2 shared
Rajzer, Izabella
1 / 1 shared
Lee, Koon-Y
1 / 1 shared
Hart, Andrew D.
1 / 1 shared
Young, Anne M.
1 / 4 shared
Bismarck, Alexander
1 / 142 shared
Dalby, Matthew J.
1 / 4 shared
Neel, Ensanya A. Abou
2 / 4 shared
Knowles, Jonathan C.
5 / 33 shared
Armitage, David Andrew
3 / 4 shared
Salih, Vehid
2 / 28 shared
Zhao, Xin
1 / 2 shared
Pickup, David M.
2 / 20 shared
Odell, Luke A.
2 / 7 shared
Abou Neel, Ensanya A.
2 / 3 shared
Morden, Nicola J.
1 / 1 shared
Smith, Mark E.
2 / 26 shared
Newport, Robert J.
2 / 33 shared
Boccaccini, Aldo R.
1 / 77 shared
Misra, Superb K.
1 / 3 shared
Philip, Sheryl E.
1 / 3 shared
Nazhat, Showan N.
1 / 6 shared
Roy, Ipsita
1 / 17 shared
Valappil, Sabeel P.
1 / 4 shared
Knowles, Jonathan Campbell
2 / 3 shared
Neel, Ensanya Ali Abou
1 / 2 shared
Walke, Witold
1 / 3 shared
Lee, Kevin
1 / 2 shared
Szade, Jacek
1 / 7 shared
Marciniak, Jan
1 / 2 shared
Korlacki, Wojciech
1 / 1 shared
Chart of publication period
2014
2010
2009
2008

Co-Authors (by relevance)

  • Kwiatkowski, Ryszard
  • Menaszek, Elżbieta
  • Rajzer, Izabella
  • Lee, Koon-Y
  • Hart, Andrew D.
  • Young, Anne M.
  • Bismarck, Alexander
  • Dalby, Matthew J.
  • Neel, Ensanya A. Abou
  • Knowles, Jonathan C.
  • Armitage, David Andrew
  • Salih, Vehid
  • Zhao, Xin
  • Pickup, David M.
  • Odell, Luke A.
  • Abou Neel, Ensanya A.
  • Morden, Nicola J.
  • Smith, Mark E.
  • Newport, Robert J.
  • Boccaccini, Aldo R.
  • Misra, Superb K.
  • Philip, Sheryl E.
  • Nazhat, Showan N.
  • Roy, Ipsita
  • Valappil, Sabeel P.
  • Knowles, Jonathan Campbell
  • Neel, Ensanya Ali Abou
  • Walke, Witold
  • Lee, Kevin
  • Szade, Jacek
  • Marciniak, Jan
  • Korlacki, Wojciech
OrganizationsLocationPeople

article

<i>In vitro</i> studies on the influence of surface modification of Ni–Ti alloy on human bone cells

  • Chrzanowski, Wojciech
  • Armitage, David Andrew
  • Salih, Vehid
  • Zhao, Xin
  • Neel, Ensanya A. Abou
  • Knowles, Jonathan C.
Abstract

<jats:title>Abstract</jats:title><jats:p>The <jats:italic>in vitro</jats:italic> cell behavior on Nitinol™ after different surface treatments was investigated. As references samples, commercially pure titanium (cpTi) and bioactive titanium were used. The surface treatments influenced the topography, surface energy, crystallographic structure, ion release, chemistry, and ability to form apatite layer from simulated body fluids. Regardless of the surface treatment, the bioactivity study showed that the kinetics of apatite film formation was similar for all tested samples. No clear indication of the surface characteristics influence on the ability for calcium‐phosphate precipitation was evident. Cell activity studies showed that ground nickel titanium, spark oxidized and thermally oxidized (at 400°C and below) had higher cellular activity and caused increased alkaline phosphatase (ALP) and osteocalcin (OC) expression which was comparable to control tissue culture plastic and titanium reference samples. Regardless of surface modifications, preimmersion of the samples in media for 72 h resulted in cell proliferation at the same level for all samples. Therefore, it can be concluded that preconditioning of samples alters surface properties and modulates the cell response regardless of the initial surface treatment and its properties. Moreover, a detrimental effect on cell response was observed after 7 and 14 days in culture for alkali treated samples. This was attributed to a high surface nickel concentration and a high nickel ion release rate from these surfaces. © 2009 Wiley Periodicals, Inc. J Biomed Mater Res, 2010</jats:p>

Topics
  • surface
  • polymer
  • nickel
  • precipitation
  • titanium
  • Calcium
  • surface energy
  • commercially pure titanium
  • bioactivity