Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bruggeman, Joost P.

  • Google
  • 1
  • 2
  • 32

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2009<i>In vitro</i> and <i>in vivo</i> degradation of poly(1,3‐diamino‐2‐hydroxypropane‐<i>co</i>‐polyol sebacate) elastomers32citations

Places of action

Chart of shared publication
Borenstein, Jeffrey T.
1 / 1 shared
Langer, Robert
1 / 9 shared
Chart of publication period
2009

Co-Authors (by relevance)

  • Borenstein, Jeffrey T.
  • Langer, Robert
OrganizationsLocationPeople

article

<i>In vitro</i> and <i>in vivo</i> degradation of poly(1,3‐diamino‐2‐hydroxypropane‐<i>co</i>‐polyol sebacate) elastomers

  • Borenstein, Jeffrey T.
  • Bruggeman, Joost P.
  • Langer, Robert
Abstract

<jats:title>Abstract</jats:title><jats:p>Biomaterials with a wide range of tunable properties are desirable for application‐specific purposes. We have previously developed a class of elastomeric poly(ester amides) based on the amine alcohol 1,3‐diamino‐2‐hydroxypropane termed poly(1,3‐diamino‐2‐hydroxypropane‐<jats:italic>co</jats:italic>‐polyol sebacate) or APS. In this work, we have synthesized and characterized formulations of APS polymers and studied the degradation of these polymers <jats:italic>in vitro</jats:italic> and <jats:italic>in vivo</jats:italic>. It was found that the chemical, physical, and mechanical properties of APS polymers could be tuned by adjusting monomer feed ratios and polymerization conditions. The degradation kinetics could also be greatly influenced by altering the formulation of APS polymers. <jats:italic>In vivo</jats:italic> degradation half‐lives ranged from 6 to ∼100 weeks. Furthermore, the dominant degradation mechanism (i.e. hydrolytic or enzymatic) could be controlled by adjusting the specific formulation of the APS polymer. On the basis of the observed <jats:italic>in vitro</jats:italic> and <jats:italic>in vivo</jats:italic> biodegradation phenomena, we also propose that the primary modes of degradation are composition dependent. © 2008 Wiley Periodicals, Inc. J Biomed Mater Res, 2009</jats:p>

Topics
  • biomaterials
  • ester
  • amine
  • alcohol
  • elastomer
  • appearance potential spectroscopy