Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kumar, Rajneesh

  • Google
  • 3
  • 4
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Behavioral change in physical, anatomical, and mechanical characteristics of thermally treated Pinus roxburghii woodcitations
  • 2023Effect of electromagnetic stirring on the transient flow, solidification and inclusion movements in the continuous casting slab mold7citations
  • 2023Physical modeling and numerical investigation of fluid flow and solidification behavior in a slab caster mold using hexa‐furcated nozzle4citations

Places of action

Chart of shared publication
Dutt, Bhupender
1 / 1 shared
Sharma, Sonika
1 / 2 shared
Jain, Lalit
1 / 1 shared
Gupta, Aman
1 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Dutt, Bhupender
  • Sharma, Sonika
  • Jain, Lalit
  • Gupta, Aman
OrganizationsLocationPeople

article

Physical modeling and numerical investigation of fluid flow and solidification behavior in a slab caster mold using hexa‐furcated nozzle

  • Kumar, Rajneesh
Abstract

<jats:title>Abstract</jats:title><jats:p>Slag entrapment from metal–slag interface during continuous casting operations has been a major area of concern for steelmakers globally. The presence of inactive regions in the upper region of the mold poses another challenge. Proper flow behavior of the molten metal coming out of the nozzle in the mold is required to overcome these challenges. Nozzle design greatly affects the flow pattern of the molten steel inside the mold. The present investigation is an attempt to study the flow and solidification behavior in a slab caster mold with the use of a novel‐designed hexa‐furcated nozzle using numerical investigation results. The casting speed and submerged entry nozzle (SEN) depth are varied to study the effect of these parameters on minimizing the inactive zones in the mold and the steel/slag interface fluctuations. The results show that the interface fluctuation increases at higher casting speed and lower SEN depth. The residence time distribution (RTD) analysis was also performed for different cases to investigate the flow behavior. The validation of the fluid flow and RTD curve inside the computational domain is carried out with the use of physical modeling.</jats:p>

Topics
  • impedance spectroscopy
  • steel
  • solidification
  • continuous casting