Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gallet, Y.

  • Google
  • 1
  • 4
  • 44

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2013Geomagnetic field intensity variations in Western Europe over the past 1100 years44citations

Places of action

Chart of shared publication
Goff, M. Le
1 / 2 shared
Jesset, S.
1 / 1 shared
Thébault, E.
1 / 1 shared
Genevey, A.
1 / 1 shared
Chart of publication period
2013

Co-Authors (by relevance)

  • Goff, M. Le
  • Jesset, S.
  • Thébault, E.
  • Genevey, A.
OrganizationsLocationPeople

article

Geomagnetic field intensity variations in Western Europe over the past 1100 years

  • Goff, M. Le
  • Jesset, S.
  • Thébault, E.
  • Gallet, Y.
  • Genevey, A.
Abstract

Ten archeointensity results have been obtained from brick and ceramic fragments collected in France and precisely dated to between the tenth and eighteenth centuries. Intensity experiments were performed using the Triaxe protocol taking into account cooling rate and thermoremanent magnetization anisotropy effects. Together with our previous results from France and Belgium, we computed a geomagnetic field intensity variation curve for Western Europe covering the past 1100 years. This curve is characterized by a general decreasing trend at the millennial timescale punctuated by three short intensity peaks, during the twelfth century, around 1350–1400 AD and $1600 AD. A similar evolution but with smoother variations due to data scatter is also observed in Western Europe and to a lesser extent in Eastern Europe when all available archeointensity data fulfilling quality criteria are used. Comparison of our archeointensity variation curve with the climatic record derived from fluctuations in length of the Swiss glaciers shows a good temporal concordance between all geomagnetic field intensity maxima detected in Western Europe over the past millennium and colder episodes. A comparison is further discussed between these intensity maxima and episodes of low rates of 14 C production. A common pattern of variations between both records is recognized between the middle of the tenth and of the beginning of eighteenth centuries. If significant, such coincidences suggest a dual geomagnetic and solar origin for the century-scale climate and radionuclide production variations during at least the past millennium.

Topics
  • impedance spectroscopy
  • experiment
  • ceramic
  • magnetization