People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Koch, Thomas
Karlsruhe Institute of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Fungal Carbon: A Cost-Effective Tunable Network Template for Creating Supercapacitorscitations
- 2023High-Strength PPS-Polymer Composites for Hydrogen High-Pressure Applications
- 2022Influence of Recyclates on Mechanical Properties and Lifetime Performance of Polypropylene Materialscitations
- 2022Maleimide-styrene-butadiene terpolymerscitations
- 2021High modulus polyimide particle-reinforcement of epoxy compositescitations
- 2021Heterotelechelic poly(propylene oxide) as migration-inhibited toughening agent in hot lithography based additive manufacturingcitations
- 2020Epoxy Resin Nanocomposites: The Influence of Interface Modification on the Dispersion Structure—A Small-Angle-X-ray-Scattering Study
- 2019Reactivity of Particles from Gasoline Direct Injection Engine: Correlation of Engine Parameters and Particle Characteristics
- 2019Reactivity of Particles from Gasoline Direct Injection Engine: Correlation of Engine Parameters and Particle Characteristics
- 2016Tough Photopolymers Based on Vinyl Esters for Biomedical Applicationscitations
- 2016Distribution and Orientation of Carbon Fibers in Polylactic Acid Parts Produced by Fused Deposition Modeling
- 2016Distribution and Orientation of Carbon Fibers in Polylactic Acid Parts Produced by Fused Deposition Modeling
Places of action
Organizations | Location | People |
---|
article
Fungal Carbon: A Cost-Effective Tunable Network Template for Creating Supercapacitors
Abstract
<p>Carbons form critical components in biogas purification and energy storage systems and are used to modify polymer matrices. The environmental impact of producing carbons has driven research interest in biomass-derived carbons, although these have yield, processing, and resource competition limitations. Naturally formed fungal filaments are investigated, which are abundantly available as food- and biotechnology-industry by-products and wastes as cost-effective and sustainable templates for carbon networks. Pyrolyzed Agaricus bisporus and Pleurotus eryngii filament networks are mesoporous and microscale with a size regime close to carbon fibers. Their BET surface areas of ≈282 m<sup>2</sup> g<sup>−1</sup> and ≈60 m<sup>2</sup> g<sup>−1</sup>, respectively, greatly exceed values associated with carbon fibers and non-activated pyrolyzed bacterial cellulose and approximately on par with values for carbon black and CNTs in addition to pyrolyzed pinewood, rice husk, corn stover or olive mill waste. They also exhibit greater specific capacitance than both non-activated and activated pyrolyzed bacterial cellulose in addition to YP-50F (coconut shell based) commercial carbons. The high surface area and specific capacitance of fungal carbon coupled with the potential to tune these properties through species- and growth-environment-associated differences in network and filament morphology and inclusion of inorganic material through biomineralization makes them potentially useful in creating supercapacitors.</p>