People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hansen, Kent Kammer
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (30/30 displayed)
- 2019Corrosion Study of Cr-Oxide Ceramics Using Rotating Ring Disk Electrode
- 2019Silver Modified Cathodes for Solid Oxide Fuel Cellscitations
- 2018Electrochemical removal of NOx using oxide-based electrodes - A reviewcitations
- 2018Novel Processing of Cathodes for Solid Oxide Fuel Cells
- 2017Determination of the Resistance of Cone-Shaped Solid Electrodescitations
- 2016Effect of pore formers on properties of tape cast porous sheets for electrochemical flue gas purificationcitations
- 2015Hybrid direct carbon fuel cell anode processes investigated using a 3-electrode half-cell setupcitations
- 2015In Situ Studies of Fe4+ Stability in β-Li3Fe2(PO4)3 Cathodes for Li Ion Batteriescitations
- 2015Catalytic Enhancement of Carbon Black and Coal-Fueled Hybrid Direct Carbon Fuel Cellscitations
- 2014Removal of NOx with Porous Cell Stacks with La0.85Sr0.15CoxMn1-xO3+δ-Ce0.9Gd0.1O1.95 Electrodes Infiltrated with BaOcitations
- 2014High Performance Infiltrated Backbones for Cathode-Supported SOFC's
- 2013A combined SEM, CV and EIS study of multi-layered porous ceramic reactors for flue gas purificationcitations
- 2013Fabrication and Characterization of multi-layer ceramics for electrochemical flue gas purificationcitations
- 2012Electrochemical reduction of NO<sub>x</sub>
- 2010Solid Oxide Fuel Cell
- 2010Characterization of (La1-xSrx)(s)MnO3 and Doped Ceria Composite Electrodes in NOx-Containing Atmosphere with Impedance Spectroscopycitations
- 2010Ceria and strontium titanate based electrodes
- 2010Sintering effect on material properties of electrochemical reactors used for removal of nitrogen oxides and soot particles emitted from diesel enginescitations
- 2010The Effect of a CGO Barrier Layer on the Performance of LSM/YSZ SOFC Cathodescitations
- 2009Processing and characterization of porous electrochemical cells for flue gas purificationcitations
- 2009Electrochemical characterization and redox behavior of Nb-doped SrTiO3citations
- 2008Niobium-doped strontium titanates as SOFC anodes
- 2008Strontium Titanate-based Composite Anodes for Solid Oxide Fuel Cellscitations
- 2008Defect and electrical transport properties of Nb-doped SrTiO3citations
- 2007Synthesis of Nb-doped SrTiO3 by a modified glycine-nitrate processcitations
- 2007Gd0.6Sr0.4Fe0.8Co0.2O3-δ: A novel type of SOFC cathodecitations
- 2006Studies of Fe-Co based perovskite cathodes with different A-site cationscitations
- 2005Charge disproportionation in (X0.6Sr0.4)0.99Fe0.8Co0.2O3-δ perovskites (X = La, Pr, Sm, Gd)citations
- 2005LSFM perovskites as cathodes for the electrochemical reduction of NOcitations
- 2001Perovskites as catalysts for the selective catalytic reduction of nitric oxide with propene: Relationship between solid state properties and catalytic activitycitations
Places of action
Organizations | Location | People |
---|
article
Sintering effect on material properties of electrochemical reactors used for removal of nitrogen oxides and soot particles emitted from diesel engines
Abstract
In the present work, 12-layered electrochemical reactors (comprising five cells) with a novel configuration including supporting layer lanthanum strontium manganate (LSM)-yttria stabilised zirconia (YSZ), electrode layer LSM-gadolinia-doped cerium oxide (CGO) and electrolyte layer CGO were fabricated via the processes of slurry preparation, tape casting and lamination and sintering. The parameters of porosity, pore size, pore size distribution, shrinkage, flow rate of the sintered reactors and the electrical conductivities of the supporting layer and the electrode in the sintered reactors were characterised. The effect of sintering temperature on microstructures and properties of the sintered samples was discussed, and 1,250 °C was determined as the appropriate sintering temperature for reactor production based on the performance requirements for applications. Using the present ceramic processing route, porous, flat and crack-free electrochemical reactors were successfully achieved. The produced electrochemical reactors have the potential application in the removal of NOx and soot particles emitted from the diesel engines.