People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bentzen, Janet Jonna
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2019Structural Characterization of Membrane-Electrode-Assemblies in High Temperature Polymer Electrolyte Membrane Fuel Cellscitations
- 2018Citrate- and glycerol triesters as novel dual-functional dispersants and plasticisers for ceramic processingcitations
- 2017Enhanced densification of thin tape cast Ceria-Gadolinium Oxide (CGO) layers by rheological optimization of slurriescitations
- 2015Roll-to-Roll Printed Silver Nanowire Semitransparent Electrodes for Fully Ambient Solution-Processed Tandem Polymer Solar Cellscitations
- 2014Removal of NO x with Porous Cell Stacks with La 0.85 Sr0.15Co x Mn 1-x O 3+δ -Ce 0.9 Gd 0.1 O 1.95 Electrodes Infiltrated with BaOcitations
- 2014Removal of NOx with Porous Cell Stacks with La0.85Sr0.15CoxMn1-xO3+δ-Ce0.9Gd0.1O1.95 Electrodes Infiltrated with BaOcitations
- 2013High Temperature Oxidation of Ferritic Steels for Solid Oxide Electrolysis Stackscitations
- 2013High Temperature Oxidation of Ferritic Steels for Solid Oxide Electrolysis Stackscitations
- 2013Transmission Electron Microscopy Specimen Preparation Method for Multiphase Porous Functional Ceramicscitations
- 2013Transmission Electron Microscopy Specimen Preparation Method for Multiphase Porous Functional Ceramicscitations
- 2013Fabrication and Characterization of multi-layer ceramics for electrochemical flue gas purificationcitations
- 2013Fabrication and Characterization of multi-layer ceramics for electrochemical flue gas purificationcitations
- 2013Low cost transportable device for transference of atmosphere sensitive materials from glove box to SEM
- 2012Performance-Microstructure Relations in Ni/CGO Infiltrated Nb-doped SrTiO3 SOFC Anodescitations
- 2012Performance-Microstructure Relations in Ni/CGO Infiltrated Nb-doped SrTiO3 SOFC Anodescitations
- 2012Microstructural evolution of nanosized Ce 0.8 Gd 0.2 O 1.9 /Ni infiltrate in a Zr 0.84 Y 0.16 O 1.92 -Sr 0.94 Ti 0.9 Nb 0.1 O 3-δ based SOFC anode under electrochemical evaluation
- 2012Microstructural evolution of nanosized Ce0.8Gd0.2O1.9/Ni infiltrate in a Zr0.84Y0.16O1.92-Sr0.94Ti0.9Nb0.1O3-δ based SOFC anode under electrochemical evaluation
- 2009Chromium poisoning of LSM/YSZ and LSCF/CGO composite cathodescitations
- 2003Thixoforming of an automotive part in A390 hypereutectic Al-Si alloycitations
Places of action
Organizations | Location | People |
---|
article
Chromium poisoning of LSM/YSZ and LSCF/CGO composite cathodes
Abstract
An electrochemical study of SOFC cathode degradation, due to poisoning by chromium oxide vapours, was performed applying 3-electrode set-ups. The cathode materials comprised LSM/YSZ and LSCF/CGO composites, whereas the electrolyte material was 8YSZ. The degradation of the cathode performance was investigated as a function of time under a current load of 0.2 or 0.4 A cm-2 and in the presence of Cr2O3 at 850 and 750 °C in air, dry or water saturated at room temperature, and compared to that of non-Cr exposed reference specimens tested under, otherwise, the same conditions. This involved continuous logging of the DC current, and the voltage between the reference electrode and the working electrode in the 3-electrode set-up combined with frequent AC impedance measurements under current load which would allow the deduction of the cathode polarisation resistance (Rp). The duration of the tests ranged from 300 to 2,970 h. Both LSM/YSZ and LSCF/CGO cathodes were sensitive to chromium poisoning; LSCF/CGO cathodes to a lesser extent than LSM/YSZ. Humid air aggravated the degradation of the cathode performance. Post-mortem electron microscopic investigations revealed several Cr-containing compounds filling up the microstructure of the cathodes.