People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ullah, Sana
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024Strengthening of Masonry Structures by Sisal-Reinforced Geopolymers
- 2024Reductive quenching of photosensitizer [Ru(bpy) 3 ] 2+ reveals the inhomogeneous distribution of sites in PAN polymer nanofibers for light-driven redox catalysis †citations
- 2024Fabrication, characterization and antioxidant activities of pectin and gelatin based edible film loaded with <scp><i>Citrus reticulata</i></scp> L. essential oilcitations
- 2024Reductive quenching of photosensitizer [Ru(bpy)3]2+ reveals the inhomogeneous distribution of sites in PAN polymer nanofibers for light-driven redox catalysiscitations
- 2023A novel film based on a cellulose/sodium alginate/gelatin composite activated with an ethanolic fraction of <i>Boswellia sacra</i> oleo gum resincitations
- 2023Functional bioinspired nanocomposites for anticancer activity with generation of reactive oxygen species
- 2023Physicochemical Characterization and Antioxidant Properties of Chitosan and Sodium Alginate Based Films Incorporated with Ficus Extractcitations
- 2022Synthesis and Characterization of High-Efficiency Halide Perovskite Nanomaterials for Light-Absorbing Applications
- 2022A comprehensive DFT study to evaluate the modulation in the band gap, elastic, and optical behaviour of CsPbBr<sub>3</sub> under the effect of stresscitations
- 2020Solution combustion synthesis of transparent conducting thin films for sustainable photovoltaic applicationscitations
- 2020Solution combustion synthesis of transparent conducting thin films for sustainable photovoltaic applicationscitations
- 2018Boosting highly transparent and conducting indium zinc oxide thin films through solution combustion synthesis: Influence of rapid thermal annealingcitations
- 2017Mechanical characterization of stacked thin films: The cases of aluminum zinc oxide and indium zinc oxide grown by solution and combustion synthesiscitations
Places of action
Organizations | Location | People |
---|
article
A novel film based on a cellulose/sodium alginate/gelatin composite activated with an ethanolic fraction of <i>Boswellia sacra</i> oleo gum resin
Abstract
<jats:title>Abstract</jats:title><jats:p><jats:italic>Boswellia sacra</jats:italic> and its derivatives exhibit notable bioactive properties, which have been the subject of extensive scientific research; however, their potential applications in food packaging remain largely untapped. In the current study, cellulose, sodium alginate, and gelatin composite edible films were fabricated with the addition of different concentrations (0.2% and 0.3%) of the ethanolic fraction of <jats:italic>Boswellia sacra</jats:italic> oleo gum resin (BSOR). The resultant films were examined for their physical, chemical, mechanical, barrier, optical, and antioxidant properties. Moreover, the films were characterized using Scanning Electron Microscopy (SEM), X‐ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) to study the impact of incorporating BSOR on the morphological, crystalline, and chemical properties of the films. The addition of BSOR increased the film thickness (0.026–0.08 mm), water vapor permeability (0.210–0.619 (g.mm)/(m<jats:sup>2</jats:sup>.h.kPa), and the intensity of the yellow color (3.01–7.20) while reducing the values of both tensile strength (6.67–1.03 MPa) and elongation at break (83.50%–48.81%). SEM and FTIR analysis confirmed the interaction between the BSOR and film‐forming components. The antioxidant properties of the edible films were significantly increased with the addition of BSOR. The comprehensive findings of the study demonstrated that BSOR possesses the potential to serve as an efficient natural antioxidant agent in the fabrication of edible films.</jats:p>