Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pinho-Da-Cruz, Joaquim

  • Google
  • 2
  • 9
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Fire resistance of austenitic stainless steel beams with rectangular hollow sections2citations
  • 2023Fire resistance of austenitic stainless steel beams with rectangular hollow sections2citations

Places of action

Chart of shared publication
Alves, Matheus
1 / 1 shared
Lopes, Nuno
2 / 9 shared
Mesquita, L. M. R.
2 / 14 shared
Piloto, Paulo
1 / 1 shared
Vila Real, Paulo M. M.
1 / 4 shared
Arrais, Flávio
2 / 3 shared
Real, Paulo Vila
1 / 2 shared
Alves, Matheus Henrique
1 / 8 shared
Piloto, P. A. G.
1 / 12 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Alves, Matheus
  • Lopes, Nuno
  • Mesquita, L. M. R.
  • Piloto, Paulo
  • Vila Real, Paulo M. M.
  • Arrais, Flávio
  • Real, Paulo Vila
  • Alves, Matheus Henrique
  • Piloto, P. A. G.
OrganizationsLocationPeople

article

Fire resistance of austenitic stainless steel beams with rectangular hollow sections

  • Alves, Matheus
  • Pinho-Da-Cruz, Joaquim
  • Lopes, Nuno
  • Mesquita, L. M. R.
  • Piloto, Paulo
  • Vila Real, Paulo M. M.
  • Arrais, Flávio
Abstract

<jats:title>Abstract</jats:title><jats:p>This paper presents a study on the structural behaviour of stainless steel profiles under fire conditions. An experimental campaign of three‐point bending tests on rectangular hollow section beams of the grade 1.4301 (also known as 304) were conducted, considering both steady‐state and transient state conditions. Prior to those tests, the mechanical characterization of the stainless steel was investigated. The constitutive laws obtained by tensile tests at high temperatures are compared with those recommended in Eurocode 3, whose respective material models were recently proposed for modifications, still requiring complete validation. In addition, numerical modelling of the bending tests has been performed afterwards achieving close approximation to the observed experimental results. Finally, analytical methods to predict the load‐deflection behaviour are also presented. Good agreement between the considered methodologies was attained validating their application on the prediction of the fire behaviour of stainless steel beams.</jats:p>

Topics
  • stainless steel
  • bending flexural test