Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bray, Robert John

  • Google
  • 1
  • 3
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Burning material behaviour in hypoxic environments: An experimental study examining a representative storage arrangement of acrylonitrile butadiene styrene, polyethylene bubble wrap, and cardboard layers as a composite system2citations

Places of action

Chart of shared publication
Hees, Patrick Van
1 / 1 shared
Barton, John
1 / 1 shared
Madsen, Daniel
1 / 2 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Hees, Patrick Van
  • Barton, John
  • Madsen, Daniel
OrganizationsLocationPeople

article

Burning material behaviour in hypoxic environments: An experimental study examining a representative storage arrangement of acrylonitrile butadiene styrene, polyethylene bubble wrap, and cardboard layers as a composite system

  • Hees, Patrick Van
  • Barton, John
  • Bray, Robert John
  • Madsen, Daniel
Abstract

Cone calorimeter and controlled atmosphere cone calorimeter experiments were conducted on various samples. The intent of the tests was to examine the behaviour of uniform and composite samples in a range of thicknesses, irradiances and oxygen concentrations. Single, uniform layers of acrylonitrile butadiene styrene (ABS) were compared to a composite mix, comprising of ABS with a surface layer of cardboard and a secondary layer of polyethylene bubble wrap (intended to represent a potential storage arrangement). The horizontal samples have been tested at irradiances of 25 kW/m2 and 50 kW/m2 and oxygen concentrations of 20.95 %, 17 % and 15 % to examine a range of significant variables.<br/>Results for the uniform arrangement indicated various correlations, previously observed in the works of others, such as the relationships typically described between applied heat flux, ignitability, heat release rate and the effect of the introduction of hypoxic conditions. However, results were shown to change significantly when samples were arranged to feature composite layers. A hypothesised cause of the behavioural change, namely the soot and char residual introduced from the incomplete combustion of the cardboard layer, highlights further important variables that require consideration in material testing under hypoxic conditions. Such variables, namely specific material behaviours and sample orientation, must be sufficiently captured in the design methodologies of systems reliant upon the introduction of hypoxic conditions.It is concluded that sufficiently capturing a wider range of variables in burning materials under hypoxic conditions will introduce further design resilience and help optimise fire protection/prevention methods. <br/>

Topics
  • impedance spectroscopy
  • surface
  • experiment
  • Oxygen
  • composite
  • combustion