People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Cochez, Marianne
Université de Lorraine
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2020Assessment of the protective effect of PMMA on water immersion ageing of flame retarded PLA/PMMA blendscitations
- 2020Calcium carbonate and ammonium polyphosphate flame retardant additives formulated to protect ethylene vinyl acetate copolymer against fire: Hydrated or carbonated calcium?citations
- 2019Thermal Stability and Flammability Behavior of Poly(3-hydroxybutyrate) (PHB) Based Compositescitations
- 2017Continuous-fiber-reinforced thermoplastic composites: influence of processing on fire retardant propertiescitations
- 2016Influence of modified mesoporous silica SBA-15 on the flammability of intumescent high-density polyethylenecitations
- 2016Investigation of thermal stability and flammability of poly(methyl methacrylate) composites by combination of APP with ZrO2, sepiolite or MMTcitations
- 2011Synergistic effect between hydrophobic oxide nanoparticles and ammonium polyphosphate on fire properties of poly(methyl methacrylate) and polystyrenecitations
- 2011Impact of modified alumina oxides on the fire properties of PMMA and PS nanocompositescitations
- 2010Tentative links between thermal diffusivity and fire-retardant properties in poly(methyl methacrylate)–metal oxide nanocompositescitations
- 2010Tentative links between thermal diffusivity and fire-retardant properties in poly(methyl methacrylate)emetal oxide nanocompositescitations
- 2008Influence of the surface modification of alumina nanoparticles on the thermal stability and fire reaction of PMMA compositescitations
- 2008The catalytic role of oxide in the thermooxidative degradation of poly(methyl methacrylate)–TiO2 nanocomposites
- 2003Characterization of iron substitution process in Fe:LiNbO3 single crystal fibers by polaron measurements
Places of action
Organizations | Location | People |
---|
article
Continuous-fiber-reinforced thermoplastic composites: influence of processing on fire retardant properties
Abstract
International audience ; Fiber-reinforced thermoplastic composite materials can find numerous applications in the transportation sector and replace thermoset composites. However, they have to comply with strict standards, particularly with those concerning their fire behavior. In this frame, composites based on an acrylic resin Elium ® (Arkema), a woven fiberglass, (taffetas tissue Chomarat G-Weave 600 P/A) and Exolit OP930 (Clariant) as fire retardant were prepared using three processes. The thermal stability and fire behavior was studied by means of thermogravimetric analysis and cone calorimetry. The obtained results allowed to highlight the drawbacks of each processing method and to select the most appropriate. The improvement of the fire behavior by combining post-curing of the composites, addition of a cross-linking agent and addition of aluminum trihydroxide (ATH) was also investigated.