Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bardou, Eric

  • Google
  • 1
  • 3
  • 18

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2007Impact of small amounts of swelling clays on the physical properties of debris-flow-like granular materials. Implications for the study of alpine debris flow18citations

Places of action

Chart of shared publication
Banfill, P. F. G.
1 / 19 shared
Boivin, Pascal
1 / 1 shared
Bowen, Paul
1 / 19 shared
Chart of publication period
2007

Co-Authors (by relevance)

  • Banfill, P. F. G.
  • Boivin, Pascal
  • Bowen, Paul
OrganizationsLocationPeople

article

Impact of small amounts of swelling clays on the physical properties of debris-flow-like granular materials. Implications for the study of alpine debris flow

  • Banfill, P. F. G.
  • Bardou, Eric
  • Boivin, Pascal
  • Bowen, Paul
Abstract

<p>The effect of the small fraction of clays on the rheological behaviour of alpine debris flow is poorly understood. This is partly due to the complexity of the debris flow mineralogy and the broad particle size distribution. This study has investigated this issue by simulating an alpine debris flow with a mixture of well characterized fractions and then varying the clay fraction composition. Four samples were tested, ranging from a clay fraction made up of only kaolinite (1:1 type clay) to samples where 80 per cent of the kaolinite is replaced by bedeillite (a 2:1 type clay similar to smectite). Changing the content of 2:1 type clay has a strong influence on the behaviour of the whole material, despite its low weight fraction of around 2 per cent. The tests carried out on these reconstituted materials were compared with the results obtained for natural debris flow materials and showed some common trends: in particular, the rheological parameters for materials with and without 2:1 clays with respect to yield stress as a function of solid content. Copyright © 2006 John Wiley &amp; Sons, Ltd.</p>

Topics
  • impedance spectroscopy