Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Khanam, R.

  • Google
  • 2
  • 9
  • 16

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020New magnetic Co3O4/Fe3O4 doped polyaniline nanocomposite for the effective and rapid removal of nitrate ions from ground water samples16citations
  • 2020New magnetic Co3O4/Fe3O4 doped polyaniline nanocomposite for the effective and rapid removal of nitrate ions from ground water samplescitations

Places of action

Chart of shared publication
Shahhoseini, A.
2 / 2 shared
Rahman, Saidur
1 / 17 shared
Bozorgian, A.
2 / 2 shared
Shahabuddin, S.
2 / 5 shared
Gabris, M. A.
2 / 2 shared
Bidhendi, M. Esmaeili
1 / 1 shared
Asadi, Z.
2 / 3 shared
Esmaeili Bidhendi, M.
1 / 1 shared
Saidur, R.
1 / 13 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Shahhoseini, A.
  • Rahman, Saidur
  • Bozorgian, A.
  • Shahabuddin, S.
  • Gabris, M. A.
  • Bidhendi, M. Esmaeili
  • Asadi, Z.
  • Esmaeili Bidhendi, M.
  • Saidur, R.
OrganizationsLocationPeople

article

New magnetic Co3O4/Fe3O4 doped polyaniline nanocomposite for the effective and rapid removal of nitrate ions from ground water samples

  • Shahhoseini, A.
  • Rahman, Saidur
  • Bozorgian, A.
  • Shahabuddin, S.
  • Gabris, M. A.
  • Khanam, R.
  • Bidhendi, M. Esmaeili
  • Asadi, Z.
Abstract

In the present study, a new nanocomposite of iron/cobalt oxides and magnetic nanoparticle doped with polyaniline (PANI-Co3O4@MNPs) was synthesized and subsequently, evaluated for its potential in decontaminating nitrate ions from ground water. Various important parameters such as pH, mass dosage, adsorption time, initial concentration, and temperature were experimentally investigated. The important surface and chemical properties of PANI-Co3O4@MNPs, such as surface morphology and roughness, composition and chemical structure were evaluated using field emission scanning electron microscope, energy-dispersive X-ray spectroscopy, and Fourier transform infrared. Finally, the removal of nitrate was assessed using kinetic, adsorption isotherm, and thermodynamic studies to investigate the underlying mechanism of the removal process. Maximum adsorption capacity was found to be 68.96 mg/g for nitrate ions at pH 6, adsorbent dosage 60 mg within 60 min. The kinetic studies and the adsorption isotherms have been well fitted using pseudo first and the Freundlich models respectively whereas the thermodynamic parameters have been described in terms of enthalpy, entropy, and Gibbs free energy which showed a negative value signifying that the adsorption process was exothermic and spontaneous in nature.

Topics
  • nanoparticle
  • nanocomposite
  • surface
  • cobalt
  • iron
  • Energy-dispersive X-ray spectroscopy