People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rahman, Saidur
Lancaster University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2023Thermo-kinetic behaviour of green synthesized nanomaterial enhanced organic phase change material : Model fitting approach
- 2022Hydrogen-rich syngas production from bi-reforming of greenhouse gases over zirconia modified Ni/MgO catalystcitations
- 2022Improved thermo-physical properties and energy efficiency of hybrid PCM/graphene-silver nanocomposite in a hybrid CPV/thermal solar systemcitations
- 2022Potent antibacterial activity of MXene–functionalized graphene nanocomposites
- 2021Optimization of thermophysical and rheological properties of mxene ionanofluids for hybrid solar photovoltaic/thermal systemscitations
- 2021ANN Modeling of Thermal Conductivity and Viscosity of MXene-Based Aqueous IoNanofluidcitations
- 2021Back propagation modeling of shear stress and viscosity of aqueous Ionic-MXene nanofluidscitations
- 2021Analysis of Multiwalled Carbon Nanotubes Porosimetry And Their Thermal Conductivity with Ionic Liquid-Based Solventscitations
- 2020Experimental investigation of energy storage properties and thermal conductivity of a novel organic phase change material/MXene as A new class of nanocompositescitations
- 2020Experimental investigation of energy storage properties and thermal conductivity of a novel organic phase change material/MXene as A new class of nanocompositescitations
- 2020Effect of al2o3 dispersion on enthalpy and thermal stability of ternary nitrate eutectic salt
- 2020Experimental assessment of a novel eutectic binary molten salt-based hexagonal boron nitride nanocomposite as a promising PCM with enhanced specific heat capacitycitations
- 2020New magnetic Co3O4/Fe3O4 doped polyaniline nanocomposite for the effective and rapid removal of nitrate ions from ground water samplescitations
- 2019Experimental investigation of thermal stability and enthalpy of eutectic alkali metal solar salt dispersed with MGO nanoparticlescitations
- 2019Crosslinked thermoelectric hydro-ionogelscitations
- 2019The influence of covalent and non-covalent functionalization of GNP based nanofluids on its thermophysical, rheological and suspension stability propertiescitations
- 2018Conducting polymers
Places of action
Organizations | Location | People |
---|
article
New magnetic Co3O4/Fe3O4 doped polyaniline nanocomposite for the effective and rapid removal of nitrate ions from ground water samples
Abstract
In the present study, a new nanocomposite of iron/cobalt oxides and magnetic nanoparticle doped with polyaniline (PANI-Co3O4@MNPs) was synthesized and subsequently, evaluated for its potential in decontaminating nitrate ions from ground water. Various important parameters such as pH, mass dosage, adsorption time, initial concentration, and temperature were experimentally investigated. The important surface and chemical properties of PANI-Co3O4@MNPs, such as surface morphology and roughness, composition and chemical structure were evaluated using field emission scanning electron microscope, energy-dispersive X-ray spectroscopy, and Fourier transform infrared. Finally, the removal of nitrate was assessed using kinetic, adsorption isotherm, and thermodynamic studies to investigate the underlying mechanism of the removal process. Maximum adsorption capacity was found to be 68.96 mg/g for nitrate ions at pH 6, adsorbent dosage 60 mg within 60 min. The kinetic studies and the adsorption isotherms have been well fitted using pseudo first and the Freundlich models respectively whereas the thermodynamic parameters have been described in terms of enthalpy, entropy, and Gibbs free energy which showed a negative value signifying that the adsorption process was exothermic and spontaneous in nature.