People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Beall, Casey
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2023Influence of carbon on the dynamic changes in <scp>C</scp>o oxidation state of Ba0.<scp>5Sr0</scp>.<scp>5Co0</scp>.<scp>8Fe0</scp>.<scp>2O3</scp>‐δ perovskite catalyst during the oxygen reduction and evolution reactionscitations
- 2020A combinatorial guide to phase formation and surface passivation of tungsten titanium oxide prepared by thermal oxidationcitations
- 2019Anodizing of Self-Passivating WxTi1–x Precursors for WxTi1–xOn Oxide Alloys with Tailored Stabilitycitations
- 2019Anodizing of self-passivating W x Ti 1– x precursors for W x Ti 1– x O n oxide alloys with tailored stabilitycitations
Places of action
Organizations | Location | People |
---|
article
Influence of carbon on the dynamic changes in <scp>C</scp>o oxidation state of Ba0.<scp>5Sr0</scp>.<scp>5Co0</scp>.<scp>8Fe0</scp>.<scp>2O3</scp>‐δ perovskite catalyst during the oxygen reduction and evolution reactions
Abstract
<jats:title>Abstract</jats:title><jats:p>Carbon is often used as a conductive additive in catalyst layers to increase conductivity and catalytic activity. However, the effect of carbon addition to perovskites on the oxygen reduction (ORR) and oxygen evolution (OER) reactions is convoluted. In this work, composites of perovskite Ba<jats:sub>0.5</jats:sub>Sr<jats:sub>0.5</jats:sub>Co<jats:sub>0.8</jats:sub>Fe<jats:sub>0.2</jats:sub>O<jats:sub>3‐δ</jats:sub> (BSCF) and conductive additives, carbon and indium doped tin oxide are compared. It is found that the conductive additives have differing effects on the ORR and OER activities and cobalt redox behavior, with carbon having a much more significant effect. In order to elucidate further these differences between BSCF and BSCF/carbon, operando X‐ray absorption spectroscopy (XAS) is measured simultaneously with cyclic voltammetry into the ORR and OER regions and the continuous changes in the Co oxidation state are observed with high time resolution. We theorize that carbon is enhancing the Co redox activity and as a result, the ORR and OER activities are likewise improved.</jats:p><jats:p><jats:boxed-text content-type="graphic" position="anchor"><jats:graphic xmlns:xlink="http://www.w3.org/1999/xlink" mimetype="image/png" position="anchor" specific-use="enlarged-web-image" xlink:href="graphic/eom212353-gra-0001-m.png"><jats:alt-text>image</jats:alt-text></jats:graphic></jats:boxed-text></jats:p>