Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ravandi, Seyed Abdolkarim Hosseini

  • Google
  • 3
  • 5
  • 14

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024High‐Performance Double‐Layer Textile‐Based Triboelectric Nanogenerator2citations
  • 2024Thermoelectric composite structure with desirable mechanical properties for high‐performance multi‐functional applications1citations
  • 2023Experimental and numerical evaluation of the surface‐localized heating capacity of the photothermal nanocomposite‐incorporated knit fabrics11citations

Places of action

Chart of shared publication
Valipour, Afsaneh
3 / 3 shared
Zamani, Mahsa
1 / 2 shared
Alsikh, Abdulkarim
3 / 3 shared
Iraji, Sahar
1 / 1 shared
Esfahany, Mohsen Nasr
1 / 1 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Valipour, Afsaneh
  • Zamani, Mahsa
  • Alsikh, Abdulkarim
  • Iraji, Sahar
  • Esfahany, Mohsen Nasr
OrganizationsLocationPeople

article

High‐Performance Double‐Layer Textile‐Based Triboelectric Nanogenerator

  • Valipour, Afsaneh
  • Ravandi, Seyed Abdolkarim Hosseini
  • Zamani, Mahsa
  • Alsikh, Abdulkarim
Abstract

<jats:p>This article aims to investigate the electrical output performance of the proposed textile‐based triboelectric nanogenerator (T‐TENG) under the operating principle of contact–separation mode. Herein, the T‐TENG structure is developed by electrospinning and weaving technologies. Therein, core–shell yarns are initially fabricated by applying nanocomposite zinc oxide /polyamide‐66 (ZnO–PA<jats:sub><jats:italic>n</jats:italic></jats:sub>) fibers on carbon (C) yarns. Then, yarns are directly woven as weft with polyamide‐66 yarns as warp to assemble the T‐TENG structure with the help of the polytetrafluoroethylene (PTFE) layer. The results show that increasing the microscopic factor (i.e., the surface roughness) of the PTFE layer about twice can, respectively, enhance the open‐circuit voltage and short‐circuit current of the T‐TENG up to 27% and 21.7% on average; besides that the thickness of the PTFE layer plays an important role in the electrical output quality of T‐TENG. Equally important, improving the rough surface of the active layer (i.e., woven fabric layer) through nanocomposite fibers (ZnO/PA<jats:sub><jats:italic>n</jats:italic></jats:sub>) can endow the T‐TENG structure to generate excellent electrical potentials under different tapping frequencies. Interestingly, the best electrical output performance obtained in this article can reach maximum values (≈14 μA and 200 V) at 10 Hz with a structure (C–ZnO<jats:sub>5%</jats:sub>PA<jats:sub><jats:italic>n</jats:italic></jats:sub>/PA<jats:sub><jats:italic>f</jats:italic></jats:sub>@PTFE<jats:sub>2m</jats:sub>) and achieve a 2.7 mW power density on a 27 MΩ external resistance.</jats:p>

Topics
  • nanocomposite
  • density
  • impedance spectroscopy
  • surface
  • Carbon
  • zinc
  • electrospinning
  • woven