Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Schröder, Olaf

  • Google
  • 1
  • 8
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Nile red as a fluorescence marker and antioxidant for regenerative fuels4citations

Places of action

Chart of shared publication
Jakob, Markus
1 / 1 shared
Albert, Jakob
1 / 5 shared
Singer, Anja
1 / 1 shared
Türck, Julian
1 / 1 shared
Krahl, Jürgen
1 / 1 shared
Garbe, Thomas
1 / 1 shared
Poller, Maximilian J.
1 / 3 shared
Lichtinger, Anne
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Jakob, Markus
  • Albert, Jakob
  • Singer, Anja
  • Türck, Julian
  • Krahl, Jürgen
  • Garbe, Thomas
  • Poller, Maximilian J.
  • Lichtinger, Anne
OrganizationsLocationPeople

article

Nile red as a fluorescence marker and antioxidant for regenerative fuels

  • Jakob, Markus
  • Albert, Jakob
  • Singer, Anja
  • Schröder, Olaf
  • Türck, Julian
  • Krahl, Jürgen
  • Garbe, Thomas
  • Poller, Maximilian J.
  • Lichtinger, Anne
Abstract

<jats:p>This paper contributes to the ongoing dialogue regarding the future application of renewable e‐fuels as part of a holistic solution to the energy crisis. In order to be able to continue using internal combustion engines in a sustainable manner, it must be ensured that these engines are operated exclusively with renewable, CO<jats:sub>2</jats:sub>‐neutral fuels. One way to achieve this is the use of a fluorescence sensor in the vehicle in combination with fuels that are labeled with a fluorescence marker. This study presents an investigation into the use of the benzophenoxazine dye Nile Red as a fluorescent marker for distinguishing fossil from renewable fuels. In addition to assessing the stability of the fluorescent marker against thermo‐oxidative aging, the study probes its antioxidative impact on fuel aging, by comparing unlabeled and with Nile Red labeled aged fuels. Fourier transform infrared spectroscopy measurements reveals the formation of aging products in the unlabeled fuels and the absence of such products in the fuels labelled with Nile Red, thereby indicating that the addition of Nile Red inhibits fuel aging. Furthermore, an examination of fuel‐specific parameters underscores the positive effect of Nile Red on fuel stability. A comparison with the antioxidant butylated hydroxytoluene (BHT) confirms the antioxidant effect of Nile Red.</jats:p><jats:p>This article is protected by copyright. All rights reserved.</jats:p>

Topics
  • impedance spectroscopy
  • combustion
  • aging
  • Fourier transform infrared spectroscopy
  • aging