Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Peyrovi, Parnian Salembier

  • Google
  • 1
  • 7
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Effects of the Electrolyte Concentration on the Nature of the Solid Electrolyte Interphase of a Lithium Metal Electrode10citations

Places of action

Chart of shared publication
Tison, Yann
1 / 8 shared
Stievano, Lorenzo
1 / 56 shared
Gimello, Olinda
1 / 9 shared
Monconduit, Laure
1 / 51 shared
Louvain, Nicolas
1 / 18 shared
Touja, Justine
1 / 3 shared
Martinez, Hervé
1 / 30 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Tison, Yann
  • Stievano, Lorenzo
  • Gimello, Olinda
  • Monconduit, Laure
  • Louvain, Nicolas
  • Touja, Justine
  • Martinez, Hervé
OrganizationsLocationPeople

article

Effects of the Electrolyte Concentration on the Nature of the Solid Electrolyte Interphase of a Lithium Metal Electrode

  • Tison, Yann
  • Stievano, Lorenzo
  • Peyrovi, Parnian Salembier
  • Gimello, Olinda
  • Monconduit, Laure
  • Louvain, Nicolas
  • Touja, Justine
  • Martinez, Hervé
Abstract

<jats:sec><jats:label /><jats:p>The need of more powerful systems with higher energy density raises a lot of interest in lithium metal batteries (LMBs). As LMBs suffer from safety concerns due to the dendrite growth, several strategies have been studied to limit this growth. Using a highly concentrated electrolyte allows a homogeneous lithium plating that delays the formation of dendrites. Herein, different techniques are used in order to better understand the beneficial role of the salt concentration in the lithium plating/stripping. Operando Fourier transform infrared spectroscopy highlights the better reversibility of the Li<jats:sup>+</jats:sup> solvation in the 5 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in 1,2‐dioxolane/1,3‐dimethoxyethane electrolyte in comparison with the 1 M electrolyte. This obviously leads to different electrolyte decompositions during the lithium plating/stripping and changes the nature of the electrode solid electrolyte interphase (SEI) depending on the salt concentration. Gas chromatography coupled with mass spectrometry as well as X‐ray photoelectron spectroscopy confirms that with the 5 M LiTFSI electrolyte the salt is preferentially reduced during the plating/stripping, leading to a more inorganic SEI on the lithium metal electrode.</jats:p></jats:sec>

Topics
  • density
  • impedance spectroscopy
  • energy density
  • mass spectrometry
  • Lithium
  • size-exclusion chromatography
  • gas chromatography
  • Fourier transform infrared spectroscopy
  • spectrometry
  • decomposition
  • photoelectron spectroscopy