People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ziąbka, Magdalena
AGH University of Krakow
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Modification of Ti-Al-V Alloys with Layers Containing TiN Particles Obtained via the Electrophoretic Deposition Process: Surface and Structural Propertiescitations
- 2024Microstructural and Surface Texture Evaluation of Orthodontic Microimplants Covered with Bioactive Layers Enriched with Silver Nanoparticlescitations
- 20233D-Printed Polycaprolactone Implants Modified with Bioglass and Zn-Doped Bioglasscitations
- 2022Transport and Electrochemical Properties of Na<sub><i>x</i></sub>Fe<sub>1–<i>y</i></sub>Mn<sub><i>y</i></sub>O<sub>2</sub>‐Cathode Materials for Na‐Ion batteries. Experimental and Theoretical Studiescitations
- 2020Surface and structural properties of medical acrylonitrile butadiene styrene modified with silver nanoparticlescitations
- 2020Antibacterial composite hybrid coatings of veterinary medical implantscitations
- 2019Long-lasting examinations of surface and structural properties of medical polypropylene modified with silver nanoparticlescitations
- 2018Biocompatibility of poly(acrylonitrile-butadiene-styrene) nanocomposites modified with silver nanoparticlescitations
Places of action
Organizations | Location | People |
---|
article
Transport and Electrochemical Properties of Na<sub><i>x</i></sub>Fe<sub>1–<i>y</i></sub>Mn<sub><i>y</i></sub>O<sub>2</sub>‐Cathode Materials for Na‐Ion batteries. Experimental and Theoretical Studies
Abstract
<jats:sec><jats:label /><jats:p>Herein, Na<jats:sub> <jats:italic>x</jats:italic> </jats:sub>Fe<jats:sub>1–<jats:italic>y</jats:italic> </jats:sub>Mn<jats:sub> <jats:italic>y</jats:italic> </jats:sub>O<jats:sub>2</jats:sub> (<jats:italic>y</jats:italic> = 0.4, 0.5, 0.6, 0.7, and 0.8) oxides, which are a potential cathode materials group for Na‐ion batteries, are presented. Samples are prepared by solid‐state synthesis and crystallized in P2‐type structure (P6<jats:sub>3</jats:sub>/mmc). Mössbauer spectroscopy studies revealed that in pristine and deintercalated samples the whole iron occurs at a high‐spin Fe<jats:sup>3+</jats:sup> state. Electrochemical impedance spectroscopy measurements exhibited the thermally activated electrical conductivity of Na<jats:sub>0.67</jats:sub>Fe<jats:sub>1–<jats:italic>y</jats:italic> </jats:sub>Mn<jats:sub> <jats:italic>y</jats:italic> </jats:sub>O<jats:sub>2</jats:sub> with relatively high activation energies (≈0.4 eV). Obtained results are supported by the electronic structure calculations (KKR‐CPA method), which indicates that total density of states at the Fermi level increases with manganese content in the sample. Electrochemical properties of Na|Na<jats:sup>+</jats:sup>|Na<jats:sub> <jats:italic>x</jats:italic> </jats:sub>Fe<jats:sub>1–<jats:italic>y</jats:italic> </jats:sub>Mn<jats:sub> <jats:italic>y</jats:italic> </jats:sub>O<jats:sub>2</jats:sub> test cells and the specific charge/discharge capacities analysis confirmed that only the manganese ions in Na<jats:sub> <jats:italic>x</jats:italic> </jats:sub>Fe<jats:sub>1–<jats:italic>y</jats:italic> </jats:sub>Mn<jats:sub> <jats:italic>y</jats:italic> </jats:sub>O<jats:sub>2</jats:sub> are active in electrochemical processes and higher content of manganese results in obtaining higher specific capacities (≈150 mAh g<jats:sup>−1</jats:sup> for <jats:italic>y</jats:italic> = 0.8 under C/10 current load).</jats:p></jats:sec>