People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Idczak, Rafał
University of Wrocław
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2024New Route to Synthesize High-Entropy Carbide Powders by Mechanical Alloyingcitations
- 2024Effect of rPET Content and Preform Heating/Cooling Conditions in the Stretch Blow Molding Process on Microcavitation and Solid-State Post-Condensation of vPET-rPET Blend: Part II—Statistical Analysis and Interpretation of Tests
- 2023Superconductivity in high-entropy alloy system containing Thcitations
- 2022Transport and Electrochemical Properties of Na<sub><i>x</i></sub>Fe<sub>1–<i>y</i></sub>Mn<sub><i>y</i></sub>O<sub>2</sub>‐Cathode Materials for Na‐Ion batteries. Experimental and Theoretical Studiescitations
- 2021Magnetic interactions in graphene decorated with iron oxide nanoparticlescitations
- 2020Fe 3 O 4 Magnetic Nanoparticles Under Static Magnetic Field Improve Osteogenesis via RUNX-2 and Inhibit Osteoclastogenesis by the Induction of Apoptosiscitations
- 2016Morphology and properties alterations in cavitating and non-cavitating high density polyethylenecitations
Places of action
Organizations | Location | People |
---|
article
Transport and Electrochemical Properties of Na<sub><i>x</i></sub>Fe<sub>1–<i>y</i></sub>Mn<sub><i>y</i></sub>O<sub>2</sub>‐Cathode Materials for Na‐Ion batteries. Experimental and Theoretical Studies
Abstract
<jats:sec><jats:label /><jats:p>Herein, Na<jats:sub> <jats:italic>x</jats:italic> </jats:sub>Fe<jats:sub>1–<jats:italic>y</jats:italic> </jats:sub>Mn<jats:sub> <jats:italic>y</jats:italic> </jats:sub>O<jats:sub>2</jats:sub> (<jats:italic>y</jats:italic> = 0.4, 0.5, 0.6, 0.7, and 0.8) oxides, which are a potential cathode materials group for Na‐ion batteries, are presented. Samples are prepared by solid‐state synthesis and crystallized in P2‐type structure (P6<jats:sub>3</jats:sub>/mmc). Mössbauer spectroscopy studies revealed that in pristine and deintercalated samples the whole iron occurs at a high‐spin Fe<jats:sup>3+</jats:sup> state. Electrochemical impedance spectroscopy measurements exhibited the thermally activated electrical conductivity of Na<jats:sub>0.67</jats:sub>Fe<jats:sub>1–<jats:italic>y</jats:italic> </jats:sub>Mn<jats:sub> <jats:italic>y</jats:italic> </jats:sub>O<jats:sub>2</jats:sub> with relatively high activation energies (≈0.4 eV). Obtained results are supported by the electronic structure calculations (KKR‐CPA method), which indicates that total density of states at the Fermi level increases with manganese content in the sample. Electrochemical properties of Na|Na<jats:sup>+</jats:sup>|Na<jats:sub> <jats:italic>x</jats:italic> </jats:sub>Fe<jats:sub>1–<jats:italic>y</jats:italic> </jats:sub>Mn<jats:sub> <jats:italic>y</jats:italic> </jats:sub>O<jats:sub>2</jats:sub> test cells and the specific charge/discharge capacities analysis confirmed that only the manganese ions in Na<jats:sub> <jats:italic>x</jats:italic> </jats:sub>Fe<jats:sub>1–<jats:italic>y</jats:italic> </jats:sub>Mn<jats:sub> <jats:italic>y</jats:italic> </jats:sub>O<jats:sub>2</jats:sub> are active in electrochemical processes and higher content of manganese results in obtaining higher specific capacities (≈150 mAh g<jats:sup>−1</jats:sup> for <jats:italic>y</jats:italic> = 0.8 under C/10 current load).</jats:p></jats:sec>