People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Walczak, Katarzyna
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2022Transport and Electrochemical Properties of Na<sub><i>x</i></sub>Fe<sub>1–<i>y</i></sub>Mn<sub><i>y</i></sub>O<sub>2</sub>‐Cathode Materials for Na‐Ion batteries. Experimental and Theoretical Studiescitations
- 2022Modification of TiAlV Alloys with Hybrid Layers Containing Metallic Nanoparticles Obtained by the Sol–Gel Method: Surface and Structural Propertiescitations
- 2020Bond strength of modern self-adhesive resin cements to human dentin and different CAD/CAM ceramicscitations
- 2020Influence of Na/Mn arrangements and P2/P′2 phase ratio on the electrochemical performance of NaxMnO2 cathodes for sodium-ion batteriescitations
- 2019Translucency of Zirconia Ceramics before and after Artificial Agingcitations
- 2017New carbon-hybrid nanoporous materials for enhanced hydrogen storage: synthesis and characterization
- 2016New carbon-hybrid nanoporous materials for enhanced hydrogen storage: synthesis and characterization
- 2016Correlation between transport properties and lithium extraction/insertion mechanism in Fe-site substituted phospholivinecitations
Places of action
Organizations | Location | People |
---|
article
Transport and Electrochemical Properties of Na<sub><i>x</i></sub>Fe<sub>1–<i>y</i></sub>Mn<sub><i>y</i></sub>O<sub>2</sub>‐Cathode Materials for Na‐Ion batteries. Experimental and Theoretical Studies
Abstract
<jats:sec><jats:label /><jats:p>Herein, Na<jats:sub> <jats:italic>x</jats:italic> </jats:sub>Fe<jats:sub>1–<jats:italic>y</jats:italic> </jats:sub>Mn<jats:sub> <jats:italic>y</jats:italic> </jats:sub>O<jats:sub>2</jats:sub> (<jats:italic>y</jats:italic> = 0.4, 0.5, 0.6, 0.7, and 0.8) oxides, which are a potential cathode materials group for Na‐ion batteries, are presented. Samples are prepared by solid‐state synthesis and crystallized in P2‐type structure (P6<jats:sub>3</jats:sub>/mmc). Mössbauer spectroscopy studies revealed that in pristine and deintercalated samples the whole iron occurs at a high‐spin Fe<jats:sup>3+</jats:sup> state. Electrochemical impedance spectroscopy measurements exhibited the thermally activated electrical conductivity of Na<jats:sub>0.67</jats:sub>Fe<jats:sub>1–<jats:italic>y</jats:italic> </jats:sub>Mn<jats:sub> <jats:italic>y</jats:italic> </jats:sub>O<jats:sub>2</jats:sub> with relatively high activation energies (≈0.4 eV). Obtained results are supported by the electronic structure calculations (KKR‐CPA method), which indicates that total density of states at the Fermi level increases with manganese content in the sample. Electrochemical properties of Na|Na<jats:sup>+</jats:sup>|Na<jats:sub> <jats:italic>x</jats:italic> </jats:sub>Fe<jats:sub>1–<jats:italic>y</jats:italic> </jats:sub>Mn<jats:sub> <jats:italic>y</jats:italic> </jats:sub>O<jats:sub>2</jats:sub> test cells and the specific charge/discharge capacities analysis confirmed that only the manganese ions in Na<jats:sub> <jats:italic>x</jats:italic> </jats:sub>Fe<jats:sub>1–<jats:italic>y</jats:italic> </jats:sub>Mn<jats:sub> <jats:italic>y</jats:italic> </jats:sub>O<jats:sub>2</jats:sub> are active in electrochemical processes and higher content of manganese results in obtaining higher specific capacities (≈150 mAh g<jats:sup>−1</jats:sup> for <jats:italic>y</jats:italic> = 0.8 under C/10 current load).</jats:p></jats:sec>