Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wagner, Dörte

  • Google
  • 9
  • 31
  • 51

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2022Infuence of microstructure and crystalline phases on impedance spectra of sodium conducting glass ceramics produced from glass powder7citations
  • 2022Influence of R=Y, Gd, Sm on crystallization and sodium ion conductivity of Na5RSi4O12 phase8citations
  • 2022Polarization impedance at the Na-Na5YSi4O12 interface7citations
  • 2022High frequency impedance measurements of sodium solid electrolytes5citations
  • 2022Influence of microstructure and crystalline phases on impedance spectra of sodium conducting glass ceramics produced from glass powder7citations
  • 2021Sintering of sodium conducting glass ceramics in the Na2O-Y2O3-SiO2-system5citations
  • 2020Impact of precrystallized NaYSi4O12 powders in the synthesis of sodium conducting solid electrolytes6citations
  • 2020Impact of Precrystallized NaYSi<sub>4</sub>O<sub>12</sub> Powders in the Synthesis of Sodium Conducting Solid Electrolytes6citations
  • 2016Crystal structure, microstructure and ionic conductivity of the cost-efficient sodium solid electrolyte Na5YSi4O12citations

Places of action

Chart of shared publication
Lee, Chang Woo
7 / 10 shared
Matthey, Björn
2 / 20 shared
Kusnezoff, Mihails
8 / 29 shared
Schilm, Jochen
9 / 32 shared
Heubner, Christian
4 / 20 shared
Anton, Rafael
1 / 1 shared
Kim, Hong Ki
1 / 1 shared
Herrmann, Mathias
2 / 36 shared
Hüttl, Juliane
2 / 3 shared
Nikolowski, Kristian
1 / 10 shared
Cai, Wenqing
1 / 1 shared
Michaelis, Alexander
1 / 85 shared
Shaji, Nitheesha
2 / 2 shared
Partsch, Mareike
1 / 3 shared
Weber, Andre
1 / 2 shared
Braun, Philipp
1 / 3 shared
Woo, Lee Chang
1 / 1 shared
Park, Jae-Woo
1 / 1 shared
Langklotz, Uta
1 / 1 shared
Kang, Seong Ho
1 / 1 shared
Nestler, Tina
1 / 1 shared
Rost, Axel
1 / 13 shared
Meyer, Dirk C.
1 / 12 shared
Rafaja, David
1 / 293 shared
Meutzner, Falk
1 / 3 shared
Münchgesang, Wolfram
1 / 6 shared
Langklotz, Ulrike
1 / 10 shared
Motylenko, Mykhaylo
1 / 13 shared
Blatov, Vladislav A.
1 / 4 shared
Vyalikh, Anastasia
1 / 3 shared
Leisegang, Tilmann
1 / 6 shared
Chart of publication period
2022
2021
2020
2016

Co-Authors (by relevance)

  • Lee, Chang Woo
  • Matthey, Björn
  • Kusnezoff, Mihails
  • Schilm, Jochen
  • Heubner, Christian
  • Anton, Rafael
  • Kim, Hong Ki
  • Herrmann, Mathias
  • Hüttl, Juliane
  • Nikolowski, Kristian
  • Cai, Wenqing
  • Michaelis, Alexander
  • Shaji, Nitheesha
  • Partsch, Mareike
  • Weber, Andre
  • Braun, Philipp
  • Woo, Lee Chang
  • Park, Jae-Woo
  • Langklotz, Uta
  • Kang, Seong Ho
  • Nestler, Tina
  • Rost, Axel
  • Meyer, Dirk C.
  • Rafaja, David
  • Meutzner, Falk
  • Münchgesang, Wolfram
  • Langklotz, Ulrike
  • Motylenko, Mykhaylo
  • Blatov, Vladislav A.
  • Vyalikh, Anastasia
  • Leisegang, Tilmann
OrganizationsLocationPeople

article

Impact of Precrystallized NaYSi<sub>4</sub>O<sub>12</sub> Powders in the Synthesis of Sodium Conducting Solid Electrolytes

  • Lee, Chang Woo
  • Kusnezoff, Mihails
  • Schilm, Jochen
  • Wagner, Dörte
Abstract

<jats:sec><jats:label /><jats:p>The glass crystallization route for Na‐ion conducting glass ceramics with conductive N5 modification of Na<jats:sub>5</jats:sub>YSi<jats:sub>4</jats:sub>O<jats:sub>12</jats:sub> has been explored. P<jats:sub>2</jats:sub>O<jats:sub>5</jats:sub> is used to modify the glass frit for optimization of the sintering and crystallization process. Mass spectroscopy reveals that the evaporation of CO<jats:sub>2</jats:sub> in the sintered microstructure is responsible for enhanced porosity. The glass is not fully transformed to the highly conductive phase (N5) by crystallization and thereby lower conductivities in sintered samples is observed. A pre‐crystallization step of the initial glass powder is evaluated as suitable to eliminate the gas evolution and subsequent sintering of material crystallized in desired N5 modification is successfully performed. With the powder of the pre‐crystallized material, homogenous sintered microstructures consisting of crystalline and glassy phases are obtained. Despite the higher temperature needed for sintering, low porosity and a mechanical strength up to 60 N mm<jats:sup>−2</jats:sup> are achieved for samples from pre‐crystallized powder. The analysis of impedance spectra of sintered samples reveal high impact of grain boundaries on total ionic conductivity. Samples made from pre‐crystallized powder show higher overall ionic conductivity of 8.3 × 10<jats:sup>−6</jats:sup> S cm<jats:sup>−1</jats:sup> at room temperature which is lower than the conductivity of crystallized N5 phase grains (1.4 × 10<jats:sup>−4</jats:sup> S cm<jats:sup>−1</jats:sup>).</jats:p></jats:sec>

Topics
  • impedance spectroscopy
  • grain
  • phase
  • glass
  • glass
  • strength
  • Sodium
  • porosity
  • ceramic
  • size-exclusion chromatography
  • crystallization
  • evaporation
  • sintering