People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Duim, Herman
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2023Disentangling Dual Emission Dynamics in Lead Bromide Perovskitecitations
- 2023Disentangling Dual Emission Dynamics in Lead Bromide Perovskitecitations
- 2023Addition of Ammonium Thiocyanate Alters the Microstructure and Energetic Landscape of 2D/3D Perovskite Films
- 2022Taking a closer look - how the microstructure of Dion-Jacobson perovskites governs their photophysics.
- 2022Metal Halide Perovskites
- 2022Taking a closer look - how the microstructure of Dion-Jacobson perovskites governs their photophysicscitations
- 2021Photophysics of Two-Dimensional Perovskites—Learning from Metal Halide Substitutioncitations
- 2021Photophysics of Two-Dimensional Perovskites—Learning from Metal Halide Substitution
- 2021Brightening of dark excitons in 2D perovskitescitations
- 2021Scalable, Template Driven Formation of Highly Crystalline Lead-Tin Halide Perovskite Filmscitations
- 2021Scalable, Template Driven Formation of Highly Crystalline Lead-Tin Halide Perovskite Filmscitations
- 2020Broad Tunability of Carrier Effective Masses in Two-Dimensional Halide Perovskitescitations
- 2020Unraveling the Microstructure of Layered Metal Halide Perovskite Filmscitations
- 2020Unraveling the Microstructure of Layered Metal Halide Perovskite Filmscitations
- 2020Extrinsic nature of the broad photoluminescence in lead iodide-based Ruddlesden-Popper perovskitescitations
- 2020Stable cesium formamidinium lead halide perovskites: a comparison of photophysics and phase purity in thin films and single crystalscitations
- 2019Stable Cesium Formamidinium Lead Halide Perovskitescitations
- 2019Mechanism of surface passivation of methylammonium lead tribromide single crystals by benzylaminecitations
- 2019Mechanism of surface passivation of methylammonium lead tribromide single crystals by benzylaminecitations
- 2019Enhancing the crystallinity and perfecting the orientation of formamidinium tin iodide for highly efficient Sn-based perovskite solar cellscitations
- 2019Scalable fabrication of high-quality crystalline and stable FAPbI(3) thin films by combining doctor-blade coating and the cation exchange reactioncitations
- 2019Scalable fabrication of high-quality crystalline and stable FAPbI(3) thin films by combining doctor-blade coating and the cation exchange reactioncitations
- 2019The Impact of Stoichiometry on the Photophysical Properties of Ruddlesden-Popper Perovskitescitations
- 2019Stable Cesium Formamidinium Lead Halide Perovskites:A Comparison of Photophysics and Phase Purity in Thin Films and Single Crystalscitations
- 2019Effects of strontium doping on the morphological, structural, and photophysical properties of FASnI(3) perovskite thin filmscitations
Places of action
Organizations | Location | People |
---|
article
Stable Cesium Formamidinium Lead Halide Perovskites
Abstract
<p>The stability of the active layer is an underinvestigated aspect of metal halide perovskite solar cells. Furthermore, the few articles on the subject are typically focused on thin films, which are complicated by the presence of defects and grain boundaries. Herein, a different approach is taken: a perovskite composition that is known to be stable in single crystal form is used, and its (photo-)physical properties are studied in the form of spin-coated thin films. The perovskites are lead-based with cesium and formamidinium as the A-site cations and iodide and bromide as the halide anions, with the formula Cs(0.1)FA(0.9)PbI(3-x)Br(x). These compounds show high potential in terms of stability in single crystal form and closely resemble the compounds that have successfully been used in highly efficient perovskite-silicon tandem solar cells. It is found that a small difference in bromine content (x = 0.45 vs 0.6) has a significant impact in terms of the phase purity and charge carrier lifetimes, and conclude that the thin films of Cs(0.1)FA(0.9)PbI(2.55)Br(0.45) have good potential for the use in optoelectronic devices.</p>