Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jaffar, Mohammad M.

  • Google
  • 1
  • 2
  • 60

University of Liverpool

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Parametric Study of CO2 Methanation for Synthetic Natural Gas Production60citations

Places of action

Chart of shared publication
Nahil, Mohamad A.
1 / 3 shared
Williams, Paul
1 / 7 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Nahil, Mohamad A.
  • Williams, Paul
OrganizationsLocationPeople

article

Parametric Study of CO2 Methanation for Synthetic Natural Gas Production

  • Nahil, Mohamad A.
  • Jaffar, Mohammad M.
  • Williams, Paul
Abstract

<jats:sec><jats:label /><jats:p>The production of methane by carbon dioxide hydrogenation through optimization of the operating parameters to enhance methane yield and carbon dioxide conversion in a two‐stage fixed bed reactor is investigated. The influence of temperature, gas hourly space velocity (GHSV), and H<jats:sub>2</jats:sub>:CO<jats:sub>2</jats:sub> ratio on the production of methane is studied. In addition, different methanation catalysts in terms of metal promoters and support materials are investigated to maximize methane production. The results show that the maximum methane yield and maximum carbon dioxide conversion are obtained at a catalyst temperature of 360 °C with a H<jats:sub>2</jats:sub>:CO<jats:sub>2</jats:sub> ratio of 4:1 and total GHSV of 6000 mL h<jats:sup>−1</jats:sup> g<jats:sup>−1</jats:sup><jats:sub>catalyst</jats:sub> and reactant GHSV of 3000 mL h<jats:sup>−1</jats:sup> g<jats:sup>−1</jats:sup><jats:sub>catalyst</jats:sub>. The optimum metal‐alumina catalyst investigated for CO<jats:sub>2</jats:sub> conversion and methane yield is the 10 wt%‐Ni‐Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> catalyst. However, reduction in the methane yield is observed with the addition of Fe and Co promoters because of catalyst sintering and nonuniform dispersion of metals on the support. Among the different catalyst support materials studied, i.e., Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>, SiO<jats:sub>2</jats:sub> and MCM‐41, the highest catalytic activity is shown by the Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> catalyst with 83 mol% CO<jats:sub>2</jats:sub> conversion, producing 81 mol% CH4 with 98% CH<jats:sub>4</jats:sub> selectivity.</jats:p></jats:sec>

Topics
  • impedance spectroscopy
  • dispersion
  • Carbon
  • size-exclusion chromatography
  • sintering